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@ Aligning language models (LMs) to generate human preferred responses is
crucial to the development of reliable Al systems.

@ It is essential to develop principled and scalable alignment method.
® Principle: Theoretically grounded in principle.

® Scalable: Accommodate to growing scale.
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® The Recipe of LM alignment [Ouyang et al., 2022]:
¢ SFT stage: Supervised Fine-Tuning

X — z&a — Yy Lt (7T9) — E(m,y)wDSft [ - log W@(y’m)}
prompt response

¢ RM stage: Reward Modeling

X Yu-Yn— S88 — Yw > £,(r4) :E(m,yw,ywm[_ log
prompt responses preference

¢ Alignment stage: Learning with (proxy) Human Feedback

6r¢ (m7yw) ]

erqﬁ (wayw) + erﬁb (m’yl)

T (16) = Eqgsporet (]Em(ylm) [re(xz,y)] — 5DKL[7T9(y|$)||7Tsft(y|fB)])

Reward model SFT policy
(from RM stage) (from SFT stage)

Ouyang, Long, et al. "Training language models to follow instructions with human feedback." Advances in neural information processing systems 35 (2022)
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Introduction

® Reinforcement Learning from Human Feedback (RLHF) [Ouyang et al., 2022]:

¢ PPO: Framing as KL-regularized reward maximization and solved by RL.

T (70) = Baprores (B, g1 I (@, )] — BDx [mo (ye) | mse(y)))

Ouyang, Long, et al. "Training language models to follow instructions with human feedback." Advances in neural information processing systems 35 (2022)
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® Reinforcement Learning from Human Feedback (RLHF) [Ouyang et al., 2022]:
¢ PPO: Framing as KL-regularized reward maximization and solved by RL.
Te(0) = Eagrupmes (B, 10y [ ()] — BDrc[mo(yle) | msn ()] )
l Y J
mo(y|x)
st (Y| )

R(z,y) =ry(x,y) — Blog

Ouyang, Long, et al. "Training language models to follow instructions with human feedback." Advances in neural information processing systems 35 (2022)
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® Reinforcement Learning from Human Feedback (RLHF) [Ouyang et al., 2022]:

¢ PPO: Framing as KL-regularized reward maximization and solved by RL.
Te(0) = Eagrupmes (B, 10y [ ()] — BDrc[mo(yle) | msn ()] )
l Y )
mo(y|x)
Tstt (Y| T)

R(way) - Tcﬁ(may) — Blog

Vot (T0) = Egporet gy (ylz) | B(E, Y) Vo log T (y|z)

Policy gradient method, e.g., PPO [Schulman et al., 2017]

Ouyang, Long, et al. "Training language models to follow instructions with human feedback." Advances in neural information processing systems 35 (2022)
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® Reinforcement Learning from Human Feedback (RLHF) [Ouyang et al., 2022]:
¢ PPO: Framing as KL-regularized reward maximization and solved by RL.
Te(0) = Eagrupmes (B, 10y [ ()] — BDrc[mo(yle) | msn ()] )
l Y J
mo(y|x)
st (Y| )

R(z,y) = ro(z,y) — Blog

Vo (18) = Egprret gy (ylz) {R(w, y)Vglogme(y|x)

Policy gradient method, e.g., PPO [Schulman et al., 2017]

RL has high variance in policy gradient estimation

Ineffici f
RL needs to sample in training loop } netrriciency or convergence

Ouyang, Long, et al. "Training language models to follow instructions with human feedback." Advances in neural information processing systems 35 (2022)
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® Direct Preference Optimization (DPO) [Rafailov et al., 2023]:

¢ Key intuition: Policy optimization as reward modeling.

KKT condition o570 (@:Y)
T (o) m5(yle) = ma(yle) —
5()
Alignment objective Analytic solution of maximizing Ji(r)
Simple algebra
Edpo(ﬂ'a) b ]E(m,yw,yl)~DP‘ef[ BT mOdel 7.‘.; (y w)
re(x,y) = Blog ———— + Blog Zs(x)
mo(yule) mo(yie) ] o o (y]x)
—1 log ———-—= — flog ———= sft\Y
o8 (P18 reye®) % malyiia))

Reward model as a function of W;
DPO: Optimize the policy using preference loss

Rafailov, Rafael, et al. "Direct preference optimization: Your language model is secretly a reward model." Advances in Neural Information Processing Systems 36 (2024)
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® Direct Preference Optimization (DPO) [Rafailov et al., 2023]:

¢ Key intuition: Policy optimization as reward modeling.

" KKT condition o570 (@:Y)
T (T0) m5(ylz) = T (y| ) Z5(@)
Alignment objective Assume unlimited Analytic solution of maximizing Jy(mo)
model capacity
?
: ‘ Simple algebra
Edpo(ﬂ'a) b E(m,yw,yl)~DP‘°f [ BT mOdel 7.‘.; (y w)
re(x,y) = Blog ———— + Blog Zs(x)
mo(Yu|T) o (yy|e) ] P et (y| )
—1 log ———~ — Blog —————= sft\Y
Oga(ﬂ 28 stt(yw|m) B nE stt(yl|m))

Reward model as a function of W;
DPO: Optimize the policy using preference loss

¢ DPO is not exactly optimizing the alignment objective.

Rafailov, Rafael, et al. "Direct preference optimization: Your language model is secretly a reward model." Advances in Neural Information Processing Systems 36 (2024)
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Introduction

® Practical constraint: The expressivity gap between my and 7
Local-normalization

7T9(y‘33) = 7T9(y1’33) W@(QQ‘w,yl) T 7-‘-H(yTb‘w7y17 T 7yn—1)

O—O— - ——0

Auto-Regressive Model (ARM)

Lin, Chu-Cheng, et al. "Limitations of autoregressive models and their alternatives." NAACL (2021)
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® Practical constraint: The expressivity gap between my and 7

Local-normalization Global-normalization
mo(ylz) = mo(yrlx) mo(yalz,y1) -+ To(yal®,y1,-- yn—1) Th(ylE) o exp {B‘lw(w,yl,yz,--- ,yn)}
Auto-Regressive Model (ARM) Energy-Based Model (EBM)

Lin, Chu-Cheng, et al. "Limitations of autoregressive models and their alternatives." NAACL (2021)
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® Practical constraint: The expressivity gap between my and 7

Local-normalization Global-normalization
W@(y‘m) = 779(91’33) W@(yQ‘wayl) 7-‘-9(:yTL‘w7y17“' 7yn—1) W;(y’m) X €eXp |:B_1T¢(w7yl7y27°" 7yn):|
oo =—— OO 0
Auto-Regressive Model (ARM) Energy-Based Model (EBM)
Pros: Efficient sampling in O(Poly(n)) time Pros: No assumption on modeling Prob(sequence)

Cons: Assume AR factorization of Prob(sequence)  Cons: Inefficient sampling in O(Superpoly(n))

Lin, Chu-Cheng, et al. "Limitations of autoregressive models and their alternatives." NAACL (2021)
s reeeeeeeeeeeeesesssnnne || cs—



Introduction

S

® Practical constraint: The expressivity gap between my and 7

Local-normalization Global-normalization
W@(y‘m) =7T9(y1’w) W@(yQ‘wayl) 7-‘-9(:yTL‘w7y17“' 7yn—1) W;(y’m) X €eXp |:B_1T¢(w7yl7y27°" 7yn):|
oo =—— OO 0
Auto-Regressive Model (ARM) Energy-Based Model (EBM)
Pros: Efficient sampling in O(Poly(n)) time Pros: No assumption on modeling Prob(sequence)

Cons: Assume AR factorization of Prob(sequence)  Cons: Inefficient sampling in O(Superpoly(n))

® Theoretical justification [Lin et al., 2021]:

¢ There are some “hard” sequences whose unnormalized scores are easy to compute, yet
the conditional local probabilities are intractable.

¢ ARMs cannot perfectly capture all EBM distributions with O(Poly(n))-sized parameters.

Lin, Chu-Cheng, et al. "Limitations of autoregressive models and their alternatives." NAACL (2021)
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® What does the solution of RLHF look like under this practical constraint?

¢ KL-regularized RL as probability matching [Korbak et al., 2021].
equivalent

E .~ Dpret (]ETrg(y|a3) [r¢(x, y)] — BDkL[me(y|x) ||7rsft(y|a:)]) Eg~ppret [DKL(WG(ZIL’D) |75, (y|w))}

Maximize reward with KL penalty Minimize reverse KL divergence

Korbak, Tomasz, et al. "RL with KL penalties is better viewed as Bayesian inference." arXiv preprint arXiv:2205.11275 (2022)
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® What does the solution of RLHF look like under this practical constraint?
¢ KL-regularized RL as probability matching [Korbak et al., 2021].

S

equivalent
E .~ Dpret (]E'rrg('y|a:) [r¢(x, y)] — BDkL[me(y|x) ||7rsft(y|zc)]) Eg~poret [DKL(WG(ZI|$) |75, (?J|5’3))}
Maximize reward with KL penalty Minimize reverse KL divergence
¢ The asymmetry of KL divergence:
« Estimate the density of p Forward KL Reverse KL
N p(z) SN o p(x)
Dk, (pHp) = Exrvp log ﬁ(SU)] Dkr, (pHp) = ]E:chp log p(x)]
o\ 7"\
,’I \\ ~ /I \\ ~
7 \\\ // \\ / { \\ '/I \\
> < — Ad — —
Target distribution p(x) Mean-seeking solution Mode-seeking solution

Korbak, Tomasz, et al. "RL with KL penalties is better viewed as Bayesian inference." arXiv preprint arXiv:2205.11275 (2022)
ol
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® Key motivation: Policy optimization as probability matching.

® Without loss of generality, consider the generalized alignment objective:

Tt () = Bt (B e g1y [ (2, 9)] = BrDic Iy (y]2) [ m ()
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® Key motivation: Policy optimization as probability matching.

S

® Without loss of generality, consider the generalized alignment objective:

Tt (r8) = Eapmst (B 1y 70, )] — B D [ () | (1)

¢ 7," Is the geometric mean of my and mg;

w0 (y|x) o mo(y|w) P m (y|a) P
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® Key motivation: Policy optimization as probability matching.

® Without loss of generality, consider the generalized alignment objective:

Tt (r8) = Eapmst (B 1y 70, )] — B D [ () | (1)

¢ 7," Is the geometric mean of my and mg;

) (ylz) o wo (y|x) P mep (y| )t P

¢ Decompose the KL regularization
5 — 57“ ) /37'('
regularize regularize
¢ Analytic solution is also 7. reward  policy

& Unify the regularization setting of PPO (3, = 1,3, = ) and DPO (B, = 3,3, = 1)

17 co—




Method

® Deriving the probability matching objective of 7 (7,")
5" <yw>]

57, (ylx)

]D)KL (7‘(‘57r ||7rgr) 1D 57T (y|x) [10

Br

¢ Calculating reverse KL requires sampling from m," , which prohibits straightforward back

propagation.

s | O c—



Method

® Deriving the probability matching objective of 7 (7,")

]D)KL(T‘-gWHﬂ-Er) = 5" (yl) [10 5 (y|x)

Importance Sampling (IS)
Ty @S the proposal distribution

Ty (yle) | w5”<y|w>]

08

Dy (7" |7} ) = E
kL(7p " |75, ) wsft(yw)lwsﬁ(mm) WET(ZI@)

e
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® Deriving the probability matching objective of 7 (7,")

]D)KL(T‘-gWHﬂ-;r) = 5" (yl) [10 5 (y|x)

Importance Sampling (IS)
Ty @S the proposal distribution

" (ylz) | w5”<y|w>]

/871' % —
Dra(o" 175, ) = Pt [m«mw) & 5yl
Define fy(z,y) = log m," (y|z) — log 7t (yl)
as the log policy ratio

f@(may)
. e
D (" [175,) = Ery(yla) [efe(m’y)log ) rqs(w,y)}
é Br

Zg,. ()




Method

® Deriving the probability matching objective of 77 (x;")

fg(w,y)
* T €
Dir (7" |75 ) = Byl | €7 log

1 "nd) (m,y)
_ 1 o7 B
Zg, (x)

# The partition function Zz (x) is intractable.
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® Deriving the probability matching objective of 7 (7,")
efo(z,y) ]

S

]D)KL(ﬂ‘g7r ||7TET) — ]Eﬂsft(ym) efe(:c,y) log

# The partition function Zz (x) is intractable.

# Inspiration from Self-Normalized Importance Sampling (SNIS)
* Estimate E,.,|f(x)] where we can only compute the unnormalized P(x)
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® Deriving the probability matching objective of 7 (7,")

e.fQ (w7y) ]

]D)KL(ﬂ‘g7r ||7TET) — ]Eﬂsft(y@) efe(:c,y) log

# The partition function Zz (x) is intractable.

# Inspiration from Self-Normalized Importance Sampling (SNIS)
* Estimate E,.,|f(x)] where we can only compute the unnormalized P(x)

P& 5, P@)f(@) _ Edlgn @) B o) = gim it e (70
>, P(2) > P(x) Eq (o] Nooo SN 1;(;;))
P
Eonplf(z)] = Zi (;zg ) where z;,--,xy ~ q are ii.d. samples

723 c—



Method

® Deriving the probability matching objective of 77 (x;")

efG (w,y) ]

Dir (1" |75,) = Ersylay | €7 @Y log T

1
_ 1 7B
Zg,.(x)

23, (@) = Exuguimlexe ("2 52

s e /| c—



Method

® Deriving the probability matching objective of 77 (x;")

O'lr

]]fDKL(7Tg7r ||7TET) = Eru(ule) cfo(x.y) log ffe(w;:?m,y) ]
me Br
25, () = Enatofoxp("2 52
¢ Sample K i.i.d. continuations yi1.x = {y1, - ,yx} from my(y|x)
efo(z,yr)
i efo(z,yk) ZJK , efo(z,y;)

D Br *Y= 1 lo

: K
Pfq (Z|y1:K75E) Z] 1| ﬁ_er¢(m’ya)

Distribution of log policy ratio Pry (1|Y1.5, )
Distribution of reward model

25 e
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® Deriving the probability matching objective of 77 (x;")

f@(w7y)
* T €
Dkr (757 [|75,) = Er(yla | €7 log

1 Td)(ﬁm,y)
Zg, (x)
7"¢(m,y)

Z,Br( ) Ex ste (Y]x) [exp( B, )]

¢ Sample K i.i.d. continuations yi1.x = {y1, - ,yx} from my(y|x)
ef@(m,yk)
K fo(x,yr) ZK efe(m,yj)
: e 1
Dyp (727 |7% ) = lim lo J
KL( 0 ” Br) K_)(x)kZ::l Z;{zl ef()(m,yj) g eﬁ 'r‘¢(w,yk)
ZJK 1 B—e"'qﬁ(m 'Y5)

Reverse KL Dk, (py,|py,) Of pg, and p,,

20 co—
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® Introduce the Efficient Exact Optimization (EXO) objective of alignment
¢ Learning from the reward model
Loxo(70) = Epnom gy, 1) | Dt (015 (191,10 @) [Pry (9110, 7)) |

 Where we define: regularize policy regularize reward

)
. e n st (Y; | ) e%m(w,yi)
Dfo (’I,’ylzK,w) = Wa(yj|33) pr¢(’6|y1:KaiB) = ZK eﬁinﬁ(w,'yj)
~ log =157
ZK . s (Y ;| ) ’
=1

¢ Learning from the preference data (K=2)
»Cexo-pref(ﬂ-H) — ]E(a:,yw,yl)NDPfef [DKL (pfe ('|yw7 Y, w) ”prh ( |yw7 Y, 33))}

- Where the preference probability p,, (- |y, y;, ) is a label-smoothed one-hot distribution.
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® Justification of exactness

¢ The gradient of EXO aligns with the gradient of the generalized alignment objective and
the reverse KL asymptotically for policy with arbitrary 6 when K — oc.

Vo Lexo (7"'0):Vé’Ilz::;lcrvl)l’mf[IDKL(T"g7T (y|$) ||7T;1. (ylw))]
1
=—2-VoJif ("),

r

¢ EXO reaches the same mode-seeking solution as RLHF.

# In practice, EXO converges effectively and efficiently with finite K (will be shown later
empirically).

eSS ) S c—



Comparison with DPO
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® Generalizing DPO:
¢ Sample K completions y1.x = {y1, ", Yr} from myg (y|x)

¢ Substitute hard human preference with soft distribution defined by reward model

7o (Y; )

Lipo-rw(m9) = E E § : er "o (@) 1 P 198 mwiT®
dpo-rw 7o) — ~Dpref Lagr wle) | T 1 0og P oy o
p €r T, ft(yl.K| ) — ZK . 6ET¢ (aj’yj) K ,871- log ﬂzt((Zj||m))
=] — S.
J Zj:l < !

¢ The gradient of DPO-rw aligns with the gradient of the forward KL asymptotically for
policy with arbitrary 6 when K — oc.

Vo Lapo-rw(T6) = VB | D (15 (y|z) |7, (y]))]

® Inexactness: DPO minimizes the forward KL, while RLHF, e.g., PPO minimizes the reverse KL.

29 o
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® Synthetic experiment: Generate IMDB review with positive sentiment

oracle reward

¢ Oracle reward (Human labeler): Classifier trained on IMDB review classification dataset

(o))

ot

S

w

1

4
F JU—

Il n " n 1 " L L 1

0

9 4 6
Dk (|| 7sgt)

Oracle reward vs KL

oracle reward

10 20 30 40 50 60 70 8 90 100
steps

Oracle reward vs Training steps

4 = PPO

DPOgret
DPOw (K=4)

| —— DPO.w (K=8)

EXOpref
- EXOrw (K=4)

1 = EXO,w (K=8)

30 e———



Experiments

® Alignment on real human preferences:

¢ Text summarization: TL,DR preference dataset

# Dialogue generation: Anthropic-HH dataset (helpfulness subset)

¢ Instruction following: Filtered real user query from an online API

Method

Reward Model (%)

GPT-4 (%)

vs SFT vs Chosen vs SFT  vs Chosen
w/ Preferences
DPO et 68.3 23.7 57.0 30.5
| EXOpret 92.5 60.1 83.0 55.0 |
w/ Reward Model
Best-of-NV 99.3 75.8 83.5 60.0
PPO 93.2 58.3 77.0 52.0
DPO,y, 82.7 39.8 70.0 41.0
| EXOry 97.3 76.4 88.5 64.0 |

Reward Model (%) GPT-4 (%)
Method vs SFT  vs Chosen vs SFT  vs Chosen
w/ Preferences
DPOyef 66.3 65.1 58.0 37.0
| EXOpret 76.4 76.7 73.0 51.0 |
w/ Reward Model
Best-of-IV 94.6 98.2 86.0 63.0
PPO 75.0 74.0 66.5 52.0
DPO,y 79.9 81.3 75.5 49.0
| EXOrw 85.6 87.2 83.5 60.0 |

Win rate (%)

60
50
40
30
20

S

GPT-4 evaluation Human evaluation
40
30 s
20 s
B Lose
0
vs DPO vs PPO vs SFT vs DPO vs PPO vs SFT

¢ Outperforms DPO and PPO in both settings of learning from preferences & reward model.

¢ On par with Best-of-N (N=128) but much more computationally efficient in inference.

¢ Scaling to realistic instruction-following dataset with consistent improvement.

3] c———
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® Visualization: Compare the density of DPO and EXO with the optimal policy
¢ Given a test prompt “This Fox spectacle was a big hit when released in”

¢ Estimate the empirical policy distribution of mg and 7; by SNIS:

A Mo (y;|) ~ My (y;|x) exp(r(z, y;)/5)
#o(wil) = (o) = S glZ) X0
2_j=176(Y )/ msn (Y ;|) 2.j=1¢xp(r(@,y;)/5)
# Use Kernel Density Estimation to estimate the density and plot the ratio pz(y|T) = fé@@)
sb L mm optimal -
[ EXO
50;— DPO

25

0'_

1200 —1000 —800 —600 —400 —200 0
log 7y (y|)




Experiments

S

® Visualization: Compare the density of DPO and EXO with the optimal policy
¢ Given a test prompt “This Fox spectacle was a big hit when released in”

¢ Estimate the empirical policy distribution of mg and 7; by SNIS:

) B Mg (y;|x) . _ Mrw(y;lz) exp(r(z, y;)/6)
To(y;|x) = M Wﬁ(yi|=’l3) = M
ijl 7Te(yj|513)/7Tsft(yj|w) Zj:l exp(r(z,y;)/B)
# Use Kernel Density Estimation to estimate the density and plot the ratio px(y|T) = Wlf%'%
sE 0w optimal -
[ EXO
i M 50 DPO . Tou
/7 - / 0\
/ \ "\\ I ] /I \\ >
;, \\ /. \\ 25:— — /, \\ // \\
= b > 0:_ IIIIIIIIIIIIIIIIIIIIIIIIIII _ A = \ >

—1200 —1000 —800 —600 —400 —200 O
«- Low density region log st (y]) High density region -»
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® Visualization: Compare the density of DPO and EXO with the optimal policy

¢ Given a test prompt “This Fox spectacle was a big hit when released in”

¢ Estimate the empirical policy distribution of mg and 7; by SNIS:

ﬁ@(yz|w) - M

\

<~/

Mmy(y;|x) 7 (g, ) = My (y; ) exp(r(z, y;)/5)
pA\Fal/) — M
ijl 7Te(yj|513)/7Tsft(yj|513) Zj:l exp(r(z,y;)/B)
# Use Kernel Density Estimation to estimate the density and plot the ratio px(y|T) = %
s | e optimal -
[ EXO
TOpxkL 50 - DPO _ & TOrkL
;’ \\\ 255_ ] ,II \\\ /// \\\
b > 0:_ IIIIIIIIIIIIIIIIIIIIII A = \ >

Overestimate the long tail

1200 —1000 —800 —600 —400 —200 0
«- Low density region

) , . Concentrating on the mode
log s, (y|) High density region -»

e eeesssssessssssssnne O/ ca—



Experiments

60 F i ]
optimal
EXO

40 i oD 7

T

20 f . 1
0 A—_‘ -

~1200 —1000 -800 —600 -400 -200 0O
log e (y| )

Estimated density ratio of the EXO, DPO and optimal policy
given the prompt “Is this supposed to be serious? I hope not”.

30 - T T ) T i
optimal
EXO
20f 1
r
10F 1
0 L L .

—1200 —1000 —800 —600 —400 —200 0
log mygt (y|)
Estimated density ratio of the EXO, DPO and optimal policy

given the prompt “This is indeed the film that popularized
kung”.

100 = T T T T ]
optimal
EXO
5ol DPO |

—1200 —1000 —800 —600 —400 -200 0
log 7y (y| )

Estimated density ratio of the EXO, DPO and optimal policy
given the prompt “Great book, great movie, great soundtrack.
Frank”.

40 optimal 7
EXO
DPO
20 1
0 =

—600  —400  —200 0
log et (/)

—1000  —800

Estimated density ratio of the EXO, DPO and optimal policy
given the prompt “This movie is about a group of people who
are”.

60 - optimal ]
EXO

401 DPO )

20 .

0 C| [

—1I200 —1600 —8I00 —éOO —4IOO —2IOO 0
log i (y|z)
Estimated density ratio of the EXO, DPO and optimal policy

given the prompt “What we have here the standard Disney
direct to DVD”.

75 [ T T T T 3]
optimal

50k EXO
DPO

25 8
0k .#. i

—1400 —1200 —1000 —800 —-600 —400 —200 0
lOgT‘-sft(ylx)

Estimated density ratio of the EXO, DPO and optimal policy
given the prompt “Once the slow beginning gets underway, the
film kicks”.
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Conclusion

® We unify PPO and DPO under the framework of density estimation, and
examine that PPO is actually minimizing the reverse KL to the optimal policy;

while DPO is minimizing the forward KL to the optimal policy.
@ We propose efficient exact optimization (EXQO) for language model alignment

problem. Specifically, EXO exactly optimizes the alignment objective in RLHF,
while being efficient in optimization by formulating as probability matching.
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Homepage: https://haozheji.github.io

GitHub repo: https://github.com/haozheji/exact-optimization

Conversational AI Group of Tsinghua University: http://coai.cs.tsinghua.edu.cn/
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