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� Components of language modeling:

u Language data: 𝒟 = 𝒙(") "$%
&

drawn from data distribution

u Probabilistic Model: 𝑝'(𝒙) map data point to probability

u Learning objective: ℒ(𝜃, 𝒟) learn model distribution from data

� Choice of model and objective seems not important nowadays. 

Model DataLearn

Really?
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� Modern recipe of language modeling:
Model: Neural language model

- Auto-Regressive (AR) model of sequence probability

� Language modeling is shown to be the ultimate task towards “intelligence”

Averaged performance across 
tasks scales with model sizes

Brown, Tom, et al. "Language Models are Few-Shot Learners." NeurIPS (2020).

Objective: Next token prediction

- Maximize the likelihood of samples in the dataset
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� Empirical law for scaling AR language model (LMs) on the MLE loss

u The power law of scaling one factor depends on the unbounded value of the other two 
factors.

u The return becomes diminished when we run out of the available human text data or 
cannot afford to increase the model size!

MLE loss has a power-law relationship with C, D, N

X is one factor from {C, D, N} 

Kaplan, Jared, et al. "Scaling Laws for Neural Language Models." arXiv preprint (2020).
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#1 What will happen when we run out of the available human text data?
u Llama3 was trained on 15T tokens, roughly the scale of the quality filtered subsets of 

Common Crawl, i.e., the high-quality English texts on the Internet.

language data on web Data-Constrained Scaling law

Data 
repeating

No data 
repeating

Data will be “ran out” 
around 2024
(estimated in 2022)

Muennighoff, Niklas, et al. "Scaling Data-Constrained Language Models." NeurIPS (2024).
Villalobos, Pablo, et al. "Will we run out of data? an analysis of the limits of scaling datasets in machine learning." arXiv preprint (2022).
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#1 What will happen when we run out of the available human text data?
u The data spectrum

Currently available 
human data

Synthetic data
generated by LLM

Fine-grained human
data, annotations

QualityQuantity
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#1 What will happen when we run out of the available human text data?
u The data spectrum from a distributional perspective

Simple distribution
with shifted mode

“Low resolution”
Large quantity

“High resolution”
Low quantity

Complex distribution 
with multiple modes 

Currently available 
human data

Synthetic data
generated by LLM

Fine-grained human
data, annotations

QualityQuantity
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#1 What will happen when we run out of the available human text data?
u The data spectrum from a distributional perspective

u MLE is not aware of quality but coverage (likelihood)! 

Shumailov, Ilia, et al. "The Curse of Recursion: Training on Generated Data Makes Models Forget." arXiv preprint (2023).

Model Collapse: 
Cannot persistently 
improve in long term

Distillation:
Easy to learn for 
low-capacity model 

Complexity:
Hard to model the 
entire distribution 

Synthetic data
generated by LLM

QualityQuantity

Simple distribution
with shifted mode

Complex distribution 
with multiple modes 

Fine-grained human
data, annotations

*Quality-Aware 
Objective:
Selectively capture 
high-quality modes
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#2 What is the parameter complexity of AR LMs to fit the growing data?
u Theory (Informal): AR LMs must be large enough to efficiently compute the probability 

of arbitrary sequence of length up to n under the complexity assumption of P≠NP.

u Large parameter:

u Efficient computation:

Lin, Chu-Cheng, et al. "Limitations of Autoregressive Models and Their Alternatives." NAACL (2020).

The present is predicted by 
marginalizing out all possible 
futures (Bayesian view)

Assumption by AR:
Efficiently predict the present
based on the past in time O(poly(n))
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#2 What is the parameter complexity of AR LMs to fit the growing data?
u Theory (Informal): AR LMs must be large enough to efficiently compute the probability 

of arbitrary sequence of length up to n under the complexity assumption of P≠NP.

u Large parameter (space):

u Efficient computation (time):

Lin, Chu-Cheng, et al. "Limitations of Autoregressive Models and Their Alternatives." NAACL (2020).

u Intuition (Space-Time Tradeoff): To accurately compute the probability of any 
sequence, the AR LM must have either exponential-size computation or exponential-
size parameters.

Assumption by AR:
Efficiently predict the present
based on the past in time O(poly(n))
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#2 What is the parameter complexity of AR LMs to fit the growing data?
u Corollary: AR LMs with compact parameters grow as O(poly(n)) can only efficiently 

compute the probability of a limited subset of sequences of length up to n.

u Exist more complex sequence spaces captured by more expressive model families.

Lin, Chu-Cheng, et al. "Limitations of Autoregressive Models and Their Alternatives." NAACL (2020).

Some 
S ∈ P

All 
S ∈ P

All 
S ∈ NP All S

Hierarchy of sequence space
(S is the set of sequences)

Auto-Regressive Model ARM

Energy-Based Model EBM

Latent-Variable Model LVM

Look-Up Model LUM

Hierarchy of parametric model families
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� Beyond MLE: Quality-aware objective
u Reverse KL [ICML’ 24]: quality assessed by reward that captures human preference

u Total variation distance [ICLR’ 23]: quality assessed by the “optimal classifier” in theory

� Beyond AR: Expressive model family
u Energy-based model [ICLR’ 24]: Augment AR model with a residual energy model

u Latent-variable model [EMNLP’ 21]: Condition AR model with a latent plan

u Look-up model [EMNLP’ 20]: Extend AR model with a parallel database look-up
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� Beyond MLE: Quality-aware objective
u Reverse KL [ICML’ 24]: quality assessed by reward that captures human preference

u Total variation distance [ICLR’ 23]: quality assessed by the “optimal classifier” in theory

� Beyond AR: Expressive model family
u Energy-based model [ICLR’ 24]: Augment AR model with a residual energy model

u Latent-variable model [EMNLP’ 21]: Condition AR model with a latent plan

u Look-up model [EMNLP’ 20]: Extend AR model with a parallel database look-up
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� Learning as divergence minimization from a distributional perspective
u MLE minimizes the forward-KL (FKL) divergence from model dist. 𝑝' to data dist. 𝑝(

u Minimize FKL under model misspecification:
• 𝑝( comes from a more expressive distribution family than 𝑝'
• Example: 𝑝( is a mixture of Gaussians, 𝑝' is a single Gaussian

𝑝! cover the support of 𝑝"
𝑝" 𝑦 𝑥 > 0 → 𝑝! 𝑦 𝑥 > 0

𝑝!
𝑝"

𝑝!
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� Is MLE a universal objective for LM training? 
u Pre-training stage:

• Initialization: Random
• Data: large amount, diverse while noisy
• Goal: Learn basic knowledge (coverage)

u Fine-tuning stage:
• Initialization: Pre-trained model
• Data: limited amount, high-quality
• Goal: Learn fine-grained ability (quality)

� MLE is not desirable when:
u Evaluation focuses on quality not coverage 

u Model is mis-specified for the data distribution

Random

Pre-trained model

Fine-tuned model
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� Forward KL is not informative about the behavior of model on quality

� quality vs coverage
u Quality: Evaluate samples generated by model

u Coverage (likelihood): Evaluate model’s  scores on data samples

� Challenge of quality-aware objective: Samples are hard to evaluate than scores!

High quality

Support of 𝑝" Support of 𝑝!

low quality
High likelihood

Support of 𝑝" Support of 𝑝!

low likelihood
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� Beyond MLE: Quality-aware objective
u Reverse KL [1]: quality assessed by reward that captures human preference

u Total variation distance [2]: quality assessed by the “optimal classifier” in theory

� Beyond AR: Expressive model family
u Energy-based model [3]: Augment AR model with a residual energy model

u Latent-variable model [4]: Condition AR model with a latent plan

u Look-up model [5]: Extend AR model with a parallel database look-up



� Controlled assessment of quality by additional human annotation

u Preference data: Fine-grained signal of quality to shape the target distribution 

u Discrimination vs Generation: EBM can capture more complex distribution than ARM

Beyond MLE for AR LM

18
Ziegler, Daniel M., et al. "Fine-tuning language models from human preferences." arXiv preprint arXiv:1909.08593 (2019).

𝒙 𝒚
prompt response

𝒙 𝒚𝟏, ⋯ , 𝒚𝒏
prompt responses

𝒚𝒘 > 𝒚𝒍
comparison

Generative annotation Preferential annotation

Generative model Reward model
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� LM alignment with human preference [Ouyang et al., 2022]:
u Alignment objective (RLHF): KL-regularized reward maximization

Reward model 
(proxy human preference)

reference LM
(initialized by MLE)

Ouyang, Long, et al. "Training language models to follow instructions with human feedback." Advances in neural information processing systems 35 (2022)

Policy gradient, Actor-Critic, e.g., PPO [Schulman et al., 2017]

<latexit sha1_base64="zaDZvjV+fLRhLd8P4FsmXBIZaFg="></latexit>

r✓J �
lhf(⇡✓) = Ex⇠Dpref,y⇠⇡✓(y|x)

h
R(x,y)r✓ log ⇡✓(y|x)

i

RL has high variance in policy gradient estimation

RL needs to sample in training loop
Inefficiency of convergence
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� Direct Preference Optimization (DPO) [Rafailov et al., 2023]:
u Key intuition: Policy optimization as reward modeling.

u 𝐿dpo is not equivalent to 𝐽lhf considering the expressivity gap between 𝜋𝜃 and 𝜋𝛽∗

Alignment objective Analytic solution of maximizing

DPO: Optimize the policy using preference loss

Rafailov, Rafael, et al. "Direct preference optimization: Your language model is secretly a reward model." Advances in Neural Information Processing Systems 36 (2024)

KKT condition

Simple algebra

Assume unlimited
model capacity 

Equivalence?

BT model

Reward model as a function of 𝜋𝛽∗

LM Alignment
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� What does the solution of RLHF look like under this practical constraint?
u KL-regularized RL as probability matching [Korbak et al., 2021].

u The asymmetry of KL divergence:
• Estimate the density of 𝑝

Maximize reward with KL penalty Minimize reverse KL divergence

Korbak, Tomasz, et al. "RL with KL penalties is better viewed as Bayesian inference." arXiv preprint arXiv:2205.11275 (2022)

Target distribution 𝑝(𝑥)

Forward KL Reverse KL
<latexit sha1_base64="b+c1e/U++L0ejJoRdLU4AOhcw04="></latexit>

DKL(pkp̂) = Ex⇠p

"
log

p(x)

p̂(x)

# <latexit sha1_base64="YxiwH3r5fettEiploLY+xVgxTBo="></latexit>

DKL(p̂kp) = Ex⇠p̂

"
log

p̂(x)

p(x)

#

Mean-seeking solution Mode-seeking solution

equivalent
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� Policy optimization as probability matching under Reverse KL[Ji et al., 2023] (ICML’ 24):

u Without loss of generality, consider the generalized alignment objective:

u 𝜋𝜃
𝛽𝜋 is the geometric mean of 𝜋𝜃 and 𝜋sft

u Decompose the KL regularization

u Analytic solution is also 𝜋𝛽
∗ . 

u Unify the regularization setting of PPO (𝛽𝜋 = 1, 𝛽𝑟 = 𝛽) and DPO (𝛽𝜋 = 𝛽, 𝛽𝑟 = 1) 

<latexit sha1_base64="0aGbKIiNzObt7PBUKKzqAtLLIFc=">AAACBnicbVDLSsNAFJ3UV62vqEsRBovgqiSi6EYounFZwT6gCWEymbRDJw9mboQSunLjr7hxoYhbv8Gdf+M0zUJbD8xw5px7uXOPnwquwLK+jcrS8srqWnW9trG5tb1j7u51VJJJyto0EYns+UQxwWPWBg6C9VLJSOQL1vVHN1O/+8Ck4kl8D+OUuREZxDzklICWPPPQ8RmQq+L2JHZokACevZyUe2bdalgF8CKxS1JHJVqe+eUECc0iFgMVRKm+baXg5kQCp4JNak6mWEroiAxYX9OYREy5ebHGBB9rJcBhIvWJARfq746cREqNI19XRgSGat6biv95/QzCSzfncZoBi+lsUJgJDAmeZoIDLhkFMdaEUMn1XzEdEkko6ORqOgR7fuVF0jlt2OcN6+6s3rwu46iiA3SETpCNLlAT3aIWaiOKHtEzekVvxpPxYrwbH7PSilH27KM/MD5/ALG4mKE=</latexit>

� = �r · �⇡

regularize 
reward

regularize 
policy

Ji, Haozhe, et al. "Towards Efficient Exact Optimization of Language Model Alignment." ICML (2024)
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� Deriving the probability matching objective of 

Importance Sampling (IS) 
𝜋sft as the proposal distribution   

Define 𝑓𝜃(𝒙,𝒚) = log 𝜋𝜃
𝛽𝜋(𝒚|𝒙) − log𝜋sft(𝒚|𝒙)

as the log policy ratio

<latexit sha1_base64="Sbpjt+D6aPjRMyzIfBbko9eBq3E="></latexit>

DKL(⇡
�⇡

✓ k⇡⇤
�r
) = E⇡�⇡

✓ (y|x)

"
log

⇡�⇡

✓ (y|x)
⇡⇤
�r
(y|x)

#

Ji, Haozhe, et al. "Towards Efficient Exact Optimization of Language Model Alignment." ICML (2024)
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� Deriving the probability matching objective of 

u The partition function 𝑍𝛽𝑟(𝒙) is intractable. 

u Inspiration from Self-Normalized Importance Sampling (SNIS)

u Sample K i.i.d. continuations from 𝜋sft(𝒚|𝒙)

Distribution of log policy ratio
Distribution of reward model

Ji, Haozhe, et al. "Towards Efficient Exact Optimization of Language Model Alignment." ICML (2024)
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� Deriving the probability matching objective of 

u The partition function 𝑍𝛽𝑟(𝒙) is intractable. 

u Inspiration from Self-Normalized Importance Sampling (SNIS)

u Sample K i.i.d. continuations from 𝜋sft(𝒚|𝒙)

Reverse KL 𝔻KL(𝑝𝑓𝜃||𝑝𝑟𝜙) of 𝑝𝑓𝜃 and 𝑝𝑟𝜙

Ji, Haozhe, et al. "Towards Efficient Exact Optimization of Language Model Alignment." ICML (2024)
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� Efficient Exact Optimization (EXO) of the alignment objective
u Learning from the reward model

• Where we define:

u Learning from the preference data (K=2)

• Where the preference probability 𝑝𝑟ℎ(⋅ |𝒚𝑤, 𝒚𝑙, 𝒙) is a label-smoothed one-hot distribution.

regularize reward
regularize policy

Ji, Haozhe, et al. "Towards Efficient Exact Optimization of Language Model Alignment." ICML (2024)
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� Analysis
u Unbiased gradient (𝐾 → ∞):

• In practice, a finite K slightly introduces bias while reduces variance.

u Asymptotic variance comparison:
weight △KL2

𝜋!
approx. negative correlation
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� Generalizing DPO:
u Sample K completions 𝒚%:𝐾 = {𝒚%, ⋯ , 𝒚𝐾} from 𝜋sft(𝑦|𝑥)
u Generalize hard label to soft label

u The gradient of DPO-rw aligns with the gradient of the forward KL asymptotically for 
policy with arbitrary 𝜃 when 𝐾 → ∞.

� Inexactness: DPO minimizes the forward KL, while RLHF, e.g., PPO minimizes the reverse KL.

Forward KL 𝔻KL(𝑝𝑓𝜃||𝑝𝑟𝜙) of 𝑝𝑓𝜃 and 𝑝𝑟𝜙 (up to a constant)

Ji, Haozhe, et al. "Towards Efficient Exact Optimization of Language Model Alignment." ICML (2024)
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� Synthetic experiment: Generate IMDB review with positive sentiment
u Oracle reward (Human labeler): Classifier trained on IMDB review classification dataset

Oracle reward vs KL Oracle reward vs Training steps

Ji, Haozhe, et al. "Towards Efficient Exact Optimization of Language Model Alignment." ICML (2024)
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� Alignment on real human preferences:
u Text summarization: TL;DR preference dataset

u Dialogue generation: Anthropic-HH dataset (helpfulness subset)

u Instruction following: Filtered real user query from an online API

u Outperforms DPO and PPO in both settings of learning from preferences & reward model.

u On par with Best-of-N (N=128) but much more computationally efficient in inference.

u Scaling to realistic instruction-following dataset with consistent improvement.
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� Visualization: Compare the density of DPO and EXO with the optimal policy 
u Given a test prompt “This Fox spectacle was a big hit when released in ”

u Estimate the empirical policy distribution of 𝜋𝜃 and 𝜋𝛽
∗ by SNIS:

u Use Kernel Density Estimation to estimate the density and plot the ratio

⇠ Low density region High density region ⇢
Concentrating on the modeOverestimate the long tail

Ji, Haozhe, et al. "Towards Efficient Exact Optimization of Language Model Alignment." ICML (2024)
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� More visualization cases: (prevailing phenomenon, no cherry-picking)

Ji, Haozhe, et al. "Towards Efficient Exact Optimization of Language Model Alignment." ICML (2024)
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� Beyond MLE: Quality-aware objective
u Reverse KL [ICML’ 24]: quality assessed by reward that captures human preference

u Total variation distance [ICLR’ 23]: quality assessed by the “optimal classifier” in theory

� Beyond AR: Expressive model family
u Energy-based model [ICLR’ 24]: Augment AR model with a residual energy model

u Latent-variable model [EMNLP’ 21]: Condition AR model with a latent plan

u Look-up model [EMNLP’ 20]: Extend AR model with a parallel database look-up
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� Total variation distance (TVD): quality assessed by “optimal classifier”
u TVD reflects the “accuracy” of an optimal classifier that try to discriminate true data and 

model generated data

u Intuition: The closer 𝑝' and 𝑝( is, the harder for the optimal classifier to discriminate. 

(The upper-bound of error rate is 50%, i.e., by chance)

Hashimoto, Tatsunori., et al. "Unifying Human and Statistical Evaluation for Natural Language Generation." ACL (2019).

True data

Prior label distribution

Model generated data

TVD defined by optimal error rate



� Learning objective for LM based on TVD [Ji et al., 2023] (ICLR’23 Oral):
u Measuring the distance in discrete sequence space:

u Gradient analysis: 𝑦 ∼ 𝑝(
• Gradient of FKL

• Gradient of TVD

TVD for LM Fine-Tuning

35
Ji, Haozhe, et al. "Tailoring Language Generation Models under Total Variation Distance." ICLR (2023).

L1-distance

𝑝"(𝑦|𝑥)

𝑝! 𝑦 𝑥 = 𝑝"(𝑦|𝑥)

gradient
∇"𝔻#$

∇" ⋅ %&

0 1

underestimate overestimate

Assign non-zero 𝑝!
to every data point



� Learning objective for LM based on TVD [Ji et al., 2023] (ICLR’23 Oral):
u Measuring the distance in discrete sequence space:

u Gradient analysis: 𝑦 ∼ 𝑝(
• Gradient of FKL

• Gradient of TVD

TVD for LM Fine-Tuning

36
Ji, Haozhe, et al. "Tailoring Language Generation Models under Total Variation Distance." ICLR (2023).

L1-distance

Assign non-zero 𝑝!
to every data point

overestimate “data void”



� Learning objective for LM based on TVD [Ji et al., 2023] (ICLR’23 Oral):
u TaiLr objective

u 𝛾 trade-offs bias and variance: 𝛾 = 1 (unbiased TVD) 𝛾 → 0 (bias to KLD)

TVD for LM Fine-Tuning

37
Ji, Haozhe, et al. "Tailoring Language Generation Models under Total Variation Distance." ICLR (2023).

𝑝"(𝑦|𝑥)

gradient
∇"𝔻#$

0 1

𝛾 = 1

𝛾 → 0

∇"ℒ'()*+

∇" ⋅ %&



� Experiments: Various text generation tasks

Experiments

38
Ji, Haozhe, et al. "Tailoring Language Generation Models under Total Variation Distance." ICLR (2023).

Machine translation: Improve over the 2022 SOTA (BiBERT) on IWSLT14

Long text generation Text summarization

TVD-based 

Other MLE variants 



� Takeaway & Future:

� The desired learning goal should capture quality, which might not always has 
a tractable form.

� Effectiveness and efficiency of learning: Bias-variance tradeoff
u Variance: Sparsity and complexity of data

u Bias: Inductive bias of estimation method

� Principle: Reduce variance with controlled bias

Beyond MLE for AR LM

39
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� Beyond MLE: Quality-aware objective
u Reverse KL [ICML’ 24]: quality assessed by reward that captures human preference

u Total variation distance [ICLR’ 23]: quality assessed by the “optimal classifier” in theory

� Beyond AR: Expressive model family
u Energy-based model [ICLR’ 24]: Augment AR model with a residual energy model

u Latent-variable model [EMNLP’ 21]: Condition AR model with a latent plan

u Look-up model [EMNLP’ 20]: Extend AR model with a parallel database look-up
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� Parametric sequence model families [Lin et al., 2020]

u Compact parameters: Parameter complexity grow in O(poly(n))

u Efficient scoring: Score a sequence in time of O(poly(n))

u Efficient sampling: Sample a sequence in time of O(poly(n))

Model Family Compact 
parameters

Efficient 
scoring

Efficient 
sampling

Support of 
distribution

Auto-Regressive Model (ARM) ✓ ✓ ✓ Some but not all S ∈ P

Energy-Based Model (EBM) ✓ ✓ ✗ All S ∈ P

Latent-Variable Model (LVM) ✓ ✗ ✓ All S ∈ NP
Look-Up Model (LUM) ✗ ✓ ✓ All S

Lin, Chu-Cheng, et al. "Limitations of Autoregressive Models and Their Alternatives." NAACL (2020).

*n: sequence length

Practical desiderata Expressivity
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� Beyond MLE: Quality-aware objective
u Reverse KL [ICML’ 24]: quality assessed by reward that captures human preference

u Total variation distance [ICLR’ 23]: quality assessed by the “optimal classifier” in theory

� Beyond AR: Expressive model family
u Energy-based model [ICLR’ 24]: Augment AR model with a residual energy model

u Latent-variable model [EMNLP’ 21]: Condition AR model with a latent plan

u Look-up model [EMNLP’ 20]: Extend AR model with a parallel database look-up
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� Definition: Assign low energy to sequence with high probability

u Energy function: 𝐸'(𝒙, 𝒚) scores the complete sequence 𝒚

u Partition function: 𝑍(𝒙) is the normalizing constant which is intractable

� Advantage: Conditional probability implicitly marginalizing out the future

u Intuition: EBM shows that exactly computing the conditional probability requires 
considering all possibilities in the future. Local normalization is insufficient (AR model)

Lin, Chu-Cheng, et al. "Limitations of Autoregressive Models and Their Alternatives." NAACL (2020).
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� Disadvantage: MLE, sampling for EBM is expensive due to intractable 𝑍(𝒙)

� Noise-Contrastive Estimation (NCE): Sampling-free method
u Intuition: Reducing energy only on correct data points does not guarantee increasing their 

probability. Need to “push them down wrong points”.

u Ranking objective:

u Score function:

u It is critical to choose an appropriate noise distribution which is useful for fine-grained 
characterization of the energy landscape.

Gutmann, Michael., et al. “Noise-Contrastive Estimation of Unnormalized Statistical Models with Applications to Natural Image Statistics". JMLR (2013)
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� Residual EBM: Leverage the inductive bias of local normalized AR model 

u NCE improves over the base AR model by setting 𝑝& = 𝑝'
u Facilitate sampling from EBM:

u Training a new EBM using NCE every time is costly and restrictive, considering a large 
number of available evaluation metrics, reward model, classifiers, etc.

u Can we leverage those evaluation functions to build EBM?

Bakhtin, Anton., et al. “Residual Energy-Based Models for Text Generation". JMLR (2022)

(1) Sampling from AR proposal (2) Resampling with energy function
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� Build EBM by aggregating evaluation functions [Ji et al., 2024] (ICLR’ 24):

u 𝑓* *$%
+ evaluate different aspect of the distribution

u How to aggregate different evaluation functions?

Ji, Haozhe, et al. "Language Model Decoding as Direct Metrics Optimization." ICLR (2024).

……

Evaluation functions

Aggregation

𝑝!
𝑝"

𝑓, 𝑓#𝑝#$%
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� Build EBM by aggregating evaluation functions [Ji et al., 2024] (ICLR’ 24):
u Aggregation criteria for unconditional LM decoding: 

• Overall quality: Samples drawn from EBM are “good” on all evaluation functions

• Regularization: Explore within the support of AR LM distribution:

u The optimal solution is exactly EBM:

• Energy function is the linear combination of evaluation functions 𝑓* *$%
+

• K optimal weights 𝜇*∗ *$%
+ are automatically determined by solving the constraints.

Ji, Haozhe, et al. "Language Model Decoding as Direct Metrics Optimization." ICLR (2024).
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� Build EBM by aggregating evaluation functions [Ji et al., 2024] (ICLR’ 24):
u Theoretical results: 𝑝∗ is a better approximation of 𝑝(
#1 𝑝∗ close the gap of support to 𝑝(

• Iterating the process effectively approaches 𝑝(
u Heuristic decoding method, e.g., top-k/p truncates 𝑝' “too hard”

• Lead to a biased distribution
• Lose coverage to the complete 𝑝(

Ji, Haozhe, et al. "Language Model Decoding as Direct Metrics Optimization." ICLR (2024).

supp(𝑝!)supp(𝑝") supp(𝑝∗)

supp(𝑝!)supp(𝑝") supp(𝑝'()*+)



Energy-Based Model

49

� Build EBM by aggregating evaluation functions [Ji et al., 2024] (ICLR’ 24):
u Theoretical results: 𝑝∗ is a better approximation of 𝑝(
#2 𝑝∗ is guaranteed to improve perplexity (2-) on 𝑝(

• Pythagorean theorem of KL divergence:

Ji, Haozhe, et al. "Language Model Decoding as Direct Metrics Optimization." ICLR (2024).

𝒫

𝑝"

𝑝∗
𝑝!

𝐾𝐿(𝑝"|𝑝!) 𝐾𝐿(𝑝∗|𝑝!)

𝐾𝐿(𝑝"|𝑝!)

𝑝∗ is the projection of 𝑝" on the hyperplane:
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� Experiments: Unconditional LM decoding
u Evaluation functions: automatic metrics, e.g., coherence, repetition, diversity, etc.

Sample from EBM

Contrastive Search

Truncated Sampling
(Tuning-free) Perplexity improvement

coherence-diversity tradeoff

Ji, Haozhe, et al. "Language Model Decoding as Direct Metrics Optimization." ICLR (2024).

Performance on various metrics
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� Experiments: Multi-objective alignment
u Evaluation functions: reward models, e.g., helpfulness, harmless, etc.

u Conditional EBM:

• Optimal instance-level weight:

• Empirical global weight:

Ji, Haozhe, et al. "Language Model Decoding as Direct Metrics Optimization." ICLR (2024).

Best-of-N experiments on Anthropic-HH
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� Takeaway & Future: 

� EBM Learning: reward modeling
u Aggregation: Compositionality of EBM

u Calibration: Uncertainty-Awareness

� EBM Inference: Acceleration
u Re-sampling / Rejection sampling

u MCMC method: Langevin Dynamics

u Score-guided sampling (learn a score function as in diffusion)

u Learn tractable AR sampler (lossy due to capacity gap between ARM and EBM)
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� Beyond MLE: Quality-aware objective
u Reverse KL [ICML’ 24]: quality assessed by reward that captures human preference

u Total variation distance [ICLR’ 23]: quality assessed by the “optimal classifier” in theory

� Beyond AR: Expressive model family
u Energy-based model [ICLR’ 24]: Augment AR model with a residual energy model

u Latent-variable model [EMNLP’ 21]: Condition AR model with a latent plan

u Look-up model [EMNLP’ 20]: Extend AR model with a parallel database look-up



Latent-Variable Model

54

� Advantage: Model the unobserved as latent variable increases capacity

u Theorem [Lin et al., 2020]: Latent-variable AR model has support S ∈ NP

u Intuition: Marginalizing over the latent “compression” 𝒛 of the future output 𝒚

� Disadvantage: No tractable exact inference of likelihood due to integral over z!

� Variational inference:

u The inference is “amortized” by first finding a good approximated posterior 𝑞. which 

later facilitates inferring 𝒚 from 𝒛.

Lin, Chu-Cheng, et al. "Limitations of Autoregressive Models and Their Alternatives." NAACL (2020).
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� AR model with continuous latent variable [Bowman et al., 2015]:

u Posterior collapse: Posterior distribution collapses to prior distribution (KL≈0) 

u Losing long-term dependence: AR generation ignores z in the long term

Bowman, Samuel., et al. "Generating Sentences From a Continuous Space." arXiv preprint arXiv:1511.06349 (2015).

AR LM

Posterior

Prior

continuous 
latent space
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� AR model with structural discrete latent codes [Ji et al., 2021] (EMNLP’ 21 Oral):

u Discrete code sequence as “latent plan” that captures the long-term structure of y

u Controlled latent capacity: # latent codes (L) × # code vocabulary (K)

u Decoupling ELBO learning (due to discretization): 
• Obtain code by argmax over posterior distribution
• Prior AR model learn the code by MLE

AR LMPosterior

Prior

discrete code 
sequence

. . .

. . .

Posterior distribution 
over code vocabulary

. . .

. . .

. . .

✓

Ji, Haozhe., et al., "DiscoDVT: Generating Long Text with Discourse-Aware Discrete Variational Transformer." EMNLP (2021).
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� Takeaway & Future :
u A good latent representation control amortization of the “bottleneck”

u Hierarchical latent-variable model: diffusion model
• Amortize sampling into multiple stages
• Diffusion for AR LM 

Continuous 
latent variable

Discrete 
latent codes

Text 
plan tokens

Representation Data

x z y x z yx z y

Posterior collapse (𝑲 → ∞) Exposure bias (𝑲 → 𝟏)Tuned by K
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� Beyond MLE: Quality-aware objective
u Reverse KL [ICML’ 24]: quality assessed by reward that captures human preference

u Total variation distance [ICLR’ 23]: quality assessed by the “optimal classifier” in theory

� Beyond AR: Expressive model family
u Energy-based model [ICLR’ 24]: Augment AR model with a residual energy model

u Latent-variable model [EMNLP’ 21]: Condition AR model with a latent plan

u Look-up model [EMNLP’ 20]: Extend AR model with a parallel database look-up
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� Advantage: Retrieve low-frequency “items” from the distribution long tail

� Disadvantage: Naïve look-up model has exploding parameters that stores “all” 
sequences.

� Practical look-up model: Semi-parametric models
u ℬ: Database, e.g., text documents, knowledge graphs, etc.

u 𝜃: AR parameters

HawaiiHawaii

Barack Obama, born in = +
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� Advantage: Retrieve low-frequency “items” from the distribution long tail

� Disadvantage: Naïve look-up model has exploding parameters that stores “all” 
sequences.

� Practical look-up model: Semi-parametric models
u ℬ: Database, e.g., text documents, knowledge graphs, etc.

u 𝜃: AR parameters

� Parametric vs Non-parametric:
u Parametric AR model is effective at learning local text continuity

u Non-parametric database is efficient in capturing sparse relationship
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� Semi-parametric model with text-based ℬ (kNN-LM) [Khandelwal et al., 2020]:
u key-value from text documents 𝒟:

u Soft matching by context similarity (legacy of text representation learning)

u The complexity of database grows linearly with the size of training data!

Khandelwal, Urvashi, et al. "Generalization Through Memorization: Nearest Neighbor Language Models." ICLR (2020).

AR LM

embedding space



Look-Up Model

62

� Semi-parametric model with graph-based ℬ [Ji et al., 2020] (EMNLP’ 20 Oral):
u Trie from knowledge graph 𝒢 = (ℰ, ℛ):

u Gain of structure: 
• Accumulate and reuse evidence along the branch of the tree
• The complexity of tree grows linearly with the context length (≪ #docs)

u Build graph from documents to increase connectivity (followed by future works)

Ji, Haozhe, et al. "Language Generation with Multi-Hop Reasoning on Commonsense Knowledge Graph." EMNLP (2020).

AR LM

embedding space 1-Hop 2-Hop
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� Takeaway & Future :

� Look-up at decoding phase:
u Semi-parametric model: Merging look-up probability with LM probability

u Induce noise, need dynamic balancing the intensity

� Look-up at encoding phase:
u Retrieve-Augmented Generation (RAG): LM performing implicit look-up

u High fluency with hallucination



� Push the boundary of language modeling in a principled and scalable way:

� #1 Learn from Data in high quality 
u Fine-grained annotations: 

u Solution: Quality-aware objective
• Key: quality evaluation

� #2 Increase model expressivity
u Data growing slows down

• Need to increase data utilization

u Solution: Expressive model families
• Key: Scaling up upon AR model

Conclusion & Future
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AR

MLE

Expressivity

Quality

EBM

. . .

RKL

. . .
Generative → Preferential → Process → ?

Current paradigm



Q & A

Homepage: https://haozheji.github.io

Email: jihaozhe@gmail.com

Thanks for Attention! 

https://haozheji.github.io/
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