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Introduction

® Components of language modeling:

r

Model

~\

¢ Language data: D = {x(")}li\’:1 drawn from data distribution

¢ Probabilistic Model: pg(x) map data point to probability

¢ Learning objective: L(0,D) learn model distribution from data

Learn

S

® Choice of model and objective seems not important nowadays. Really?
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® Modern recipe of language modeling:

MOdeI: Neu ral |anguage mOdeI 160 Aggregate Performance Across Benchmarks
Few Shot

- Auto-Regressive (AR) model of sequence probability 5 O%s Shl

80 —e— Zero Shot

[«2]
o

T
po(x) = Hp0(37t|3317 e, Tct)
i=l

A —~~ o 40 5 : V
Auto-Regressive Modeling /

Objective: Next token prediction ’

Accuracy

. . . . . 0
- Maximize the likelihood of samples in the dataset B OB e LM (Billng) o8
Lvig(0;D) = Egpup [ — 1ogp9(m)} Averaged performance across
N ” tasks scales with model sizes

-~

Maximum Likelihood Estimation

® Language modeling is shown to be the ultimate task towards “intelligence”

Brown, Tom, et al. "Language Models are Few-Shot Learners." NeurlPS (2020).
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@ Empirical law for scaling AR language model (LMs) on the MLE loss

[$)]

Test Loss
N

w

L = (Cmin/2.3-108)70:050

2 T T T T
109 1077 10-5 103 1071
Compute

PF-days, non-embedding

10!

4.2

3.9

3.6

3.3

3.0

2.7

L=(D/5.4- 1013)—0095

5.6
4.8

4.0

3.2

2.4

—— L=(N/8.8" 1013)—0.076

108 10°
Dataset Size
tokens

10° 107 10°
Parameters
non-embedding

MLE loss has a power-law relationship with C, D, N

L(X) x XX

X is one factor from {C, D, N}

¢ The power law of scaling one factor depends on the unbounded value of the other two

factors.

¢ The return becomes diminished when we run out of the available human text data or

cannot afford to increase the model size!

Kaplan, Jared, et al. "Scaling Laws for Neural Language Models." arXiv preprint (2020).
T 4 L
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#1 What will happen when we run out of the available human text data?

¢ Llama3 was trained on 15T tokens, roughly the scale of the quality filtered subsets of
Common Crawl, i.e., the high-quality English texts on the Internet.

r=="
—— Extrapolation based oh c(;mputé 1 Return on compute when repeating
—— Extrapolation from trend
- Stock of data (90% Cl} I 3.4 o
------- Stock of data (med|an5 1 BT | 16)
------- 1 3.2 ; %
5 I | “ ~ =
Data will be “ran out” it |
Wi ran 8 o |
ata y 20;4 an ou S 10 : : % 28 ; Data
roun 5 1 ek A = :*‘ .
a OLJ. . g ......................................... f" 1 (_g BiE repeatlng
(estimated in 2022) ¢ ! i | reeell
z 2.4 i
|
......... s I 2.2{ Up to = 4 epochs iRap\'dlydimimshmg NO data
Coondate | || edin dae :
AR feta s exhaustes 2058 s 10 s 12T repeating
1 1 (1) (4) (10) (40)  (100)
2022 2023 2024 = = 4 2025 2026 Tokens
vear (Epochs)
language data on web Data-Constrained Scaling law
Muennighoff, Niklas, et al. "Scaling Data-Constrained Language Models." NeurIPS (2024).
Villalobos, Pablo, et al. "Will we run out of data? an analysis of the limits of scaling datasets in machine learning." arXiv preprint (2022).

I 5 L
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#1 What will happen when we run out of the available human text data?

¢ The data spectrum

Quantity <4---------- — - - > Quality
Synthetic data Currently available Fine-grained human
generated by LLM human data data, annotations



Introduction

#1 What will happen when we run out of the available human text data?

¢ The data spectrum from a distributional perspective

Quantity <---------- - >  Quality
Synthetic data Currently available Fine-grained human
generated by LLM human data data, annotations
o “Low resolution” N “High resolution” SN
TN Sso 1 4l . A N
,‘:\ TN Large quantity /4 ‘:" \_ Low quantity (f(__/’_._—\)\;
N V| € ) P | N
oo , vy SEmme——a—y \‘ 11 H 1
Sl - ) N\ ,l’l’ oo /
Sso g \ ST [ S
— Ve \_-~
Simple distribution Complex distribution
with shifted mode with multiple modes

S
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#1 What will happen when we run out of the available human text data?

¢ The data spectrum from a distributional perspective

Quantity «-----

Synthetic data
generated by LLM

Sao
------

Simple distribution
with shifted mode

Distillation:

Easy to learn for
low-capacity model

Model Collapse:
Cannot persistently
improve in long term

Complexity:
Hard to model the
entire distribution

*Quality-Aware
Objective:
Selectively capture

————— > Quality

Fine-grained human
data, annotations

high-quality modes Complex distribution

¢ MLE is not aware of quality but coverage (likelihood)!

with multiple modes

Shumailoy, llia, et al. "The Curse of Recursion: Training on Generated Data Makes Models Forget." arXiv preprint (2023).

—8—
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#2 What is the parameter complexity of AR LMs to fit the growing data?

¢ Theory (Informal): AR LMs must be large enough to efficiently compute the probability
of arbitrary sequence of length up to n under the complexity assumption of P~=NP.

¢ Large parameter:
|67,%| = O(Superpoly(n))

¢ Efficient computation:
n Assumption by AR:
pe, (x) = Hpgn (x¢|x1,--+ ,x4—1)  Efficiently predict the present
t=1 /) based on the past in time O(poly(n))

_—”
N
R

4 Zw;t Do, (iBSt, ;B’>t) The p.res.e.nt is predicted.by
Do, (T¢|X<t) , marginalizing out all possible
Zm’Zt po,, (T<t; wzt) futures (Bayesian view)

Lin, Chu-Cheng, et al. "Limitations of Autoregressive Models and Their Alternatives." NAACL (2020).

—9—
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#2 What is the parameter complexity of AR LMs to fit the growing data?

¢ Theory (Informal): AR LMs must be large enough to efficiently compute the probability
of arbitrary sequence of length up to n under the complexity assumption of P~=NP.

¢ Large parameter (space):
|67,%| = O(Superpoly(n))

¢ Efficient computation (time):
Assumption by AR:

n
pe, (x) = Hpgn (x¢|x1, -+ ,x4—1) Efficiently predict the present
t—1 based on the past in time O(poly(n))

# Intuition (Space-Time Tradeoff): To accurately compute the probability of any
sequence, the AR LM must have either exponential-size computation or exponential-
size parameters.

Lin, Chu-Cheng, et al. "Limitations of Autoregressive Models and Their Alternatives." NAACL (2020).
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#2 What is the parameter complexity of AR LMs to fit the growing data?

# Corollary: AR LMs with compact parameters grow as O(poly(n)) can only efficiently
compute the probability of a limited subset of sequences of length up to n.

¢ Exist more complex sequence spaces captured by more expressive model families.

Auto-Regressive Model@
Energy-Based Model EBM A|| All All'S
S eEP/ SENP
Latent-Variable Model LVM

Look-Up Model LUM
Hierarchy of sequence space
Hierarchy of parametric model families (S is the set of sequences)

Lin, Chu-Cheng, et al. "Limitations of Autoregressive Models and Their Alternatives." NAACL (2020).



Beyond the theoretical limits of language modeling

Emmumo

® Beyond MLE: Quality-aware objective

¢ Reverse KL [ICML’ 24]: quality assessed by reward that captures human preference

# Total variation distance [ICLR’ 23]: quality assessed by the “optimal classifier” in theory

® Beyond AR: Expressive model family

¢ Energy-based model [ICLR’ 24]: Augment AR model with a residual energy model
¢ Latent-variable model [EMNLP’ 21]: Condition AR model with a latent plan
¢ Look-up model [EMNLP’ 20]: Extend AR model with a parallel database look-up



Beyond the theoretical limits of language modeling

O
Emumm.

® Beyond MLE: Quality-aware objective
¢ Reverse KL [ICML’' 24]: quality assessed by reward that captures human preference

# Total variation distance [ICLR’ 23]: quality assessed by the “optimal classifier” in theory

4



MLE for AR LM

@ Learning as divergence minimization from a distributional perspective
¢ MLE minimizes the forward-KL (FKL) divergence from model dist. pg to data dist. p,

7

Ep, (ko) | — 108 26(y[2)| = Diw (pallpo) (] + H (pa) ]

-~

forward KL entropy

¢ Minimize FKL under model misspecification:
* pg comes from a more expressive distribution family than pg
- Example: p; is a mixture of Gaussians, py is a single Gaussian

. Pa\y|x
Pa mlnEprd(.|m)llog (y )] Pa

0 po(y|x)
/\/\‘ /ﬁ NSA

> pa(y|x) >0 — pe(ylx) >0
cover the support of p,

S

14 co—



MLE for AR LM

® |s MLE a universal objective for LM training?

¢ Pre-training stage:
* Initialization: Random
 Data: large amount, diverse while noisy
 Goal: Learn basic knowledge (coverage)
¢ Fine-tuning stage:
* Initialization: Pre-trained model
» Data: limited amount, high-quality
 Goal: Learn fine-grained ability (quality)

® MLE is not desirable when:
¢ Evaluation focuses on quality not coverage

¢ Model is mis-specified for the data distribution

S

Random

y A\

Jﬁ\ O\

Fine-tuned model /\
AN

15 co—



Beyond MLE for AR LM

® Forward KL is not informative about the behavior of model on quality

® quality vs coverage
¢ Quality: Evaluate samples generated by model

¢ Coverage (likelihood): Evaluate model’'s scores on data samples

Support of pg Support of p, Support of py Support of p,
I/,‘ ------ NN\“\
! RN High likelihood
|OW quality /\\/ ® o0 .. \\\ Ig | | . \
\\ C ) \\

. . /. o ® ® AN o
High quality N ® o \ low likelihood

~
~~~~~~

@ Challenge of quality-aware objective: Samples are hard to evaluate than scores!

e | () ea—



Beyond the theoretical limits of language modeling

Ennuumo

® Beyond MLE: Quality-aware objective
¢ Reverse KL [1]: quality assessed by reward that captures human preference

# Total variation distance [2]: quality assessed by the “optimal classifier” in theory

4



Beyond MLE for AR LM

® Controlled assessment of quality by additional human annotation

X 3...3 g 4 X Y Yn— zaa_’ Yw = Vi
prompt response prompt responses comparison
Generative annotation Preferential annotation
pa(y|x) Pi(Yy, = Y | )
pe(y|w) T¢($,y)
Generative model Reward model

¢ Preference data: Fine-grained signal of quality to shape the target distribution

¢ Discrimination vs Generation: EBM can capture more complex distribution than ARM

S

Ziegler, Daniel M., et al. "Fine-tuning language models from human preferences." arXiv preprint arXiv:1909.08593 (2019).

18 c—



LM Alignment
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® LM alignment with human preference [Ouyang et al., 2022]:

¢ Alignment objective (RLHF): KL-regularized reward maximization

Ty(m0) = Baprupret (B, (1) [ra (@ )] — BDxcImo (y) [ (wl)) )

Reward model reference LM
(proxy human preference) (initialized by MLE)
R(z,y) = ry(z,y) — flog Toly|z)
Tste (Y| )

nglﬁf(m) = Eqprret yoory (y|) [R(m, y)Vy log we(y\m)]

Policy gradient, Actor-Critic, e.g., PPO [Schulman et al., 2017]

RL has high variance in policy gradient estimation

RL needs to sample in training loop ] Inefficiency of convergence

Ouyang, Long, et al. "Training language models to follow instructions with human feedback." Advances in neural information processing systems 35 (2022)



LM Alignment
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@ Direct Preference Optimization (DPO) [Rafailov et al., 2023]:

¢ Key intuition: Policy optimization as reward modeling.

4 KKT condition o570 (@:Y)
Tine(T6) ma(Yle) = T (yl|)
. g Zs()
Alignment objective Afnsgcrjneel ggpl)’anc"i:;d Analytic solution of maximizing Jy:(mo)
Equivalence? ‘ Simple algebra
Lapo(me) = ]E(w,yw,yl)NDp‘ef! BT model ( ) = 81 7";’( ) Blog Zs(x)
re(X,Y) = plog ————— + plog Zg(x
- logo(ﬂ log To(Yu|®) _ Blog To(yil@) )] st (Y| )
Tt (Yo | T) st (Y |)

Reward model as a function of W;
DPO: Optimize the policy using preference loss

* Ly, is not equivalent to Jy, considering the expressivity gap between my and

Rafailov, Rafael, et al. "Direct preference optimization: Your language model is secretly a reward model." Advances in Neural Information Processing Systems 36 (2024)
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® What does the solution of RLHF look like under this practical constraint?
¢ KL-regularized RL as probability matching [Korbak et al., 2021].

equivalent
E .~ Dpret (]E'rrg('y|a:) [r¢(x, y)] — BDkL[me(y|x) ||7rsft(y|zc)]) Eg~poret [DKL(WG(ZI|$) |75, (?J|5’3))}
Maximize reward with KL penalty Minimize reverse KL divergence
¢ The asymmetry of KL divergence:
« Estimate the density of p Forward KL Reverse KL
N p(z) SN o p(x)
Dk, (pHp) = Exrvp log ﬁ(SU)] Dkr, (pHp) = ]E:chp log p(x)]
o\ 7"\
,’I \\ ~ /I \\ ~
7 \\\ // \\ / { \\ '/I \\
> < — Ad — —
Target distribution p(x) Mean-seeking solution Mode-seeking solution

Korbak, Tomasz, et al. "RL with KL penalties is better viewed as Bayesian inference." arXiv preprint arXiv:2205.11275 (2022)

- 7] co—




Reverse KL for LM Alignment

S

® Policy optimization as probability matching under Reverse KL[Ji et al., 2023] (ICML’ 24):

¢ Without loss of generality, consider the generalized alignment objective:

Tt (747) = B pwet (B g [0 (2, 9)] = Br D [ (yl) o (w|2)])

* wﬁ ™ Is the geometric mean of my and g

/371' ( —Bx

ylz) o< 7o (yla) = i (ylz)
¢ Decompose the KL regularization

6 — 57“ ) /37'('
regularize regularize
¢ Analytic solution is also reward  policy

& Unify the regularization setting of PPO (3, = 1,3, = ) and DPO (B, = 3,3, = 1)

Ji, Haozhe, et al. "Towards Efficient Exact Optimization of Language Model Alignment." ICML (2024)
7 com—




Reverse KL for LM Alignment
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® Deriving the probability matching objective of 7 (7,")
Ty <yw>]

T (ylx)

Importance Sampling (IS)
Ty @S the proposal distribution

T (yle) | w5”<y|w>]

]D)KL(Wg” |75, ) = Ewgw () llog

08

Dy (7" |7} ) = E
KL(7T9 ||7Tﬂ7,) stt(yw)lﬂ-sft(y|m) W;r(y|w)

Define fy(z,y) = logm,"(y|z) — log mes;(y|x)
as the log policy ratio

efe (may) :|

T¢ (:B,'y)

]D)KL (ﬂ-gﬂ- ||7-‘-;T) — Eﬂ'sft(y|w) |:ef9 (Q’J)y) log

Ji, Haozhe, et al. "Towards Efficient Exact Optimization of Language Model Alignment." ICML (2024)
s ssESEEEEEEEE—— ) ea—



Reverse KL for LM Alignment

® Deriving the probability matching objective of 7 (7,")

fe(way)
" €
D (m5"[[m5,) = Engtute |2 log — ]
(& Br

Zg, (x)

# The partition function Zg (x) is intractable.
' Zp. () = B (ylo lexp(— 4

# Inspiration from Self-Normalized Importance Sampling (SNIS)

# Sample K i.i.d. continuations Y1:x ={¥1, -, Yk} from mg(y|x)
efo(z,yk)
i efo(z,yx) ZjK_l efo(z,y;)

D Br *Y= 1i lo
KL(W@ ”WBT) KI—IPOOI; Zngl efo(z,y;) 5 eﬁ o (T, Yk)

: K
pfe(”yl:Kvm) Z] 18, -eTo(T:Y;)

Distribution of log policy ratio Pry (1|Y1.5, T)
Distribution of reward model

S

ro (e, y) )

Ji, Haozhe, et al. "Towards Efficient Exact Optimization of Language Model Alignment." ICML (2024)

7l co—



Reverse KL for LM Alignment

® Deriving the probability matching objective of 7 (7,")

e.fQ (w7y) ]

Dir (7" |75 ) = Erula) | €7 log

# The partition function Zz (x) is intractable.
# Inspiration from Self-Normalized Importance Sampling (SNIS)
# Sample K i.i.d. continuations Y1:x ={¥1, -, Yk} from mg(y|x)

efe (m,yk)

K K :
fo(z,yxk) > efo(x,y;)
,371' * — .]3:] E € 1 .7—1

25{ 1B, em,(m Y;)

Reverse KL Dk, (py,||py,) Of ps, @and p,,

S

Ji, Haozhe, et al. "Towards Efficient Exact Optimization of Language Model Alignment." ICML (2024)

25 co—



Reverse KL for LM Alignment
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@ Efficient Exact Optimization (EXO) of the alignment objective
¢ Learning from the reward model
Lexo(Tg) = EwNDprefEstt(yl;K|m) []D)KL (pfe Y15 w)”pw (Y15 w))]

 Where we define: regularize policy regularize reward

o TOWIT)
. e n st (Y | ) eﬁrd’(w’yi)
Dfo (’I,’ylzK,w) = We(yjlw) pr¢(’6|y1:K>€l3) = ZK eﬁinﬁ(w,'yj)
x log =157
ZK . s (Y ;| ) ’
j=1

¢ Learning from the preference data (K=2)
£ex0-pref(7TH) — ]E(a:,yw,yl)NDPfef [DKL (pfe ('|yw7 Y, w) ”prh ( |yw7 Y, 33))}

- Where the preference probability p,, (- |y, y;, ) is a label-smoothed one-hot distribution.

Ji, Haozhe, et al. "Towards Efficient Exact Optimization of Language Model Alignment." ICML (2024)



Reverse KL for LM Alignment
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® Analysis
#® Unbiased gradient (K — oo):

Vo Lexo(10)=V 0 E e pors| Dt (7™ (y|2) || 75, (y]))

1
=—— Vot (1)

r

* In practice, a finite K slightly introduces bias while reduces variance.
¢ Asymptotic variance comparison:

(z.y) (vl) WeiAght AKL2
A w(z, Yy To\Y|T 2 mo(y|x)
Var KLeXO =F ~TT lo " — KL w(x, — g 7
Ko = Eyers | g ] B ms(yl) ~ <) ] = Y) = o)
Var[KL,y] = E <log mo(yi|®) _ KL)2 >
P g W;(yz|w) Ty

approx. negative correlation




Comparison with DPO

S

® Generalizing DPO:
¢ Sample K completions y1.x = {y1, ", Yr} from myg (y|x)

® Generalize hard label to soft label

1 o (y;lx)
o Br T (T:Y;) P 198 wgCuile)
Edpo—rw(m) = ]EwNDP”wasft(yl:Klw) - E : K Lre(zy;) = log 0 (¥jl®)
=1 Z]:l e ! ZK 1 6/87‘- o8 7"'sft(yjlm)
J:

Forward KL Dxy,(py,||pr,) of ps, and p,, (up to a constant)

¢ The gradient of DPO-rw aligns with the gradient of the forward KL asymptotically for
policy with arbitrary 6 when K — oc.

Vo Laporw(To) = VoEq . poret [DKL(WET (y|zc)||7r9”(y|m))]

® Inexactness: DPO minimizes the forward KL, while RLHF, e.g., PPO minimizes the reverse KL.

Ji, Haozhe, et al. "Towards Efficient Exact Optimization of Language Model Alignment." ICML (2024)

= 28 co—




Experiments

® Synthetic experiment: Generate IMDB review with positive sentiment

S

¢ Oracle reward (Human labeler): Classifier trained on IMDB review classification dataset

7_ T T ”".—L—".:i sf T T I S S B E S — T T T T ]
6_ ”’/.’ ’.,/,_'
: %3 o
o 5‘ ,/// /// 4 o
8 1 y ) _ 5
= | ,, - £
8 4r f -~ N b 8
B v [} 4 °
< | #7070 A= <
o] F '4 7 P [
5 3 L ,I a8 *// 7] 5
o /‘ g
2 tb,,° P ]
Ky o |
1F*— ] O --------- | S S ) | S| (RS O S | (O S SO S | S S, ),
o 9 4 6 10 20 30 40 50 60 70 80 90 100
Dy (7||7stt) steps
Oracle reward vs KL Oracle reward vs Training steps

4 = PPO

DPOpref
DPOyy (K=4)

| —— DPO.w (K=8)

EXOpref

- EXOyy (K=4)
1 — EXO.w (K=8)

Ji, Haozhe, et al. "Towards Efficient Exact Optimization of Language Model Alignment." ICML (2024)
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Experiments

® Alignment on real human preferences:

¢ Text summarization: TL,DR preference dataset

# Dialogue generation: Anthropic-HH dataset (helpfulness subset)

¢ Instruction following: Filtered real user query from an online API

Method

Reward Model (%)

GPT-4 (%)

vs SFT vs Chosen vs SFT  vs Chosen
w/ Preferences
DPO et 68.3 23.7 57.0 30.5
| EXOpret 92.5 60.1 83.0 55.0 |
w/ Reward Model
Best-of-NV 99.3 75.8 83.5 60.0
PPO 93.2 58.3 77.0 52.0
DPO,y, 82.7 39.8 70.0 41.0
| EXOry 97.3 76.4 88.5 64.0 |

Reward Model (%) GPT-4 (%)
Method vs SFT  vs Chosen vs SFT  vs Chosen
w/ Preferences
DPOyef 66.3 65.1 58.0 37.0
| EXOpret 76.4 76.7 73.0 51.0 |
w/ Reward Model
Best-of-IV 94.6 98.2 86.0 63.0
PPO 75.0 74.0 66.5 52.0
DPO,y 79.9 81.3 75.5 49.0
| EXOrw 85.6 87.2 83.5 60.0 |

Win rate (%)

60
50
40
30
20

S

GPT-4 evaluation Human evaluation
40
30 s
20 s
B Lose
0
vs DPO vs PPO vs SFT vs DPO vs PPO vs SFT

¢ Outperforms DPO and PPO in both settings of learning from preferences & reward model.

¢ On par with Best-of-N (N=128) but much more computationally efficient in inference.

¢ Scaling to realistic instruction-following dataset with consistent improvement.

30 e———



Experiments

S

® Visualization: Compare the density of DPO and EXO with the optimal policy

¢ Given a test prompt “This Fox spectacle was a big hit when released in”

¢ Estimate the empirical policy distribution of mg and 7; by SNIS:

) B Mg (y;|x) . _ Mrw(y;lz) exp(r(z, y;)/6)
To(y;|x) = M Wﬁ(yilm) = M
ijl 7Te(yj|513)/7Tsft(yj|513) Zj:l exp(r(z,y,)/5)
# Use Kernel Density Estimation to estimate the density and plot the ratio px(y|T) = %
s 0 | e optimal -
[ EXO
N M0, 50 F DPO 1 - Tou
7\ - [ ] 7\
,II \\\ AN 25 fN\\ S \‘\
2/ = AS > 0:_ IIIIIIIIIIIIIIIIIIIIII /4 ~¥ \\ .

Overestimate the long tail

1200 —1000 —800 —600 —400 —200 0
«- Low density region

) , . Concentrating on the mode
log s, (y|) High density region -»

Ji, Haozhe, et al. "Towards Efficient Exact Optimization of Language Model Alignment." ICML (2024)
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Experiments

60 |

40

optimal ]
EXO

oD

20 f . 1
0 A—_‘

T

L

—1200 —1000 —-800 —600 -400 —200
log e (y| )

Estimated density ratio of the EXO, DPO and optimal policy
given the prompt “Is this supposed to be serious? I hope not”.

0

30 - T T ) T i
optimal
EX
20f 0
r
10f 1
1] = =~

log mygt (y|)

Estimated density ratio of the EXO, DPO and optimal policy
given the prompt “This is indeed the film that popularized

kung”.

—1200 -1000 —-800 —600 —400 —200 0

100 = T T T T ]
optimal
EXO
5ol DPO |

—1200 —1000 —800 —600 —400 -200 0
log megt (y| )

Estimated density ratio of the EXO, DPO and optimal policy
given the prompt “Great book, great movie, great soundtrack.
Frank”.

40 optimal 7
EXO
DPO
20 1
0 —

—600  —400  —200 0
log et (yl)

—1000  —800

Estimated density ratio of the EXO, DPO and optimal policy
given the prompt “This movie is about a group of people who
are”.

60 - optimal ]
EXO

401 DPO )

20 .

0 C| [

—1I200 —1600 —8I00 —éOO —4IOO —2IOO 0
log i (y|z)
Estimated density ratio of the EXO, DPO and optimal policy

given the prompt “What we have here the standard Disney
direct to DVD”.

75 [ T T T T 3]
optimal

50k EXO
DPO

25+ .
ok .4‘%. ]

—1400 —1200 —1000 —800 —-600 —400 —200 0
lOgﬂ-sft(ylx)

Estimated density ratio of the EXO, DPO and optimal policy
given the prompt “Once the slow beginning gets underway, the
film kicks”.

Ji, Haozhe, et al. "Towards Efficient Exact Optimization of Language Model Alignment." ICML (2024)



Beyond the theoretical limits of language modeling

Enuuum.

® Beyond MLE: Quality-aware objective
¢ Reverse KL [ICML’' 24]: quality assessed by reward that captures human preference

¢ Total variation distance [ICLR’ 23]: quality assessed by the “optimal classifier” in theory

4
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Beyond MLE for AR LM

S

@ Total variation distance (TVD): quality assessed by “optimal classifier”

¢ TVD reflects the “accuracy” of an optimal classifier that try to discriminate true data and
model generated data

1
c~p(c)= Bemoulli(i) Prior label distribution

pd(ylm) ifc=1 Truedata

~ r,C) = .
Yy ~ p(yle, c) {po (y|x) ifc =0 Model generated data

|lpa — pollTv =1—2 ir}f]P’(f(:I:, Y) # c) TVD defined by optimal error rate

N
error rate

¢ Intuition: The closer pg and p, is, the harder for the optimal classifier to discriminate.
(The upper-bound of error rate is 50%, i.e., by chance)

Hashimoto, Tatsunori., et al. "Unifying Human and Statistical Evaluation for Natural Language Generation." ACL (2019).



TVD for LM Fine-Tuning

S

@ Learning objective for LM based on TVD [Ji et al., 2023] (ICLR'23 Oral):

¢ Measuring the distance in discrete sequence space:

1
lPa — pollTv = D) Z ‘pd(yl-’B) —pe(y|$)‘ L1-distance
yey
=1- " min (pa(ylz), po(yl))
yey
¢ Gradient analysis: y ~ pg4 ,
: gradient
» Gradient of FKL A v
Vops(ylz)  Ass o
6P6 SSign hon-zero pg
V¢D " — :
oDxv(pallpe) po(y|x) to every data point L P (V%) = pa(¥]x)
Vollrv
* Gradient of TVD
Vope(y|x)
— , x) < x
0, po(y|z) > pa(y|x) underestimate €<=—> overestimate

Ji, Haozhe, et al. "Tailoring Language Generation Models under Total Variation Distance." /ICLR (2023).



TVD for LM Fine-Tuning

S

@ Learning objective for LM based on TVD [Ji et al., 2023] (ICLR'23 Oral):

¢ Measuring the distance in discrete sequence space:

1
|pa — pollTv = 5 Z ‘pd(yl-’B) —pe(y|$)‘ L1-distance
yey
=1- ) min (Pd(y|w),pe(y|m))
yey

¢ Gradient analysis: y ~ pg4

- SremiEroT Y ASSign NoNn=zero py 08— ————
to every data point ' — target]
= —.— TVD
¢ Gradient of TVD 3 04r KLD
Vope(y|T) '
— , po(ylz) < pa(y|e - __-= _
Vollpa — pollv ~ { ~ palyl) * PYI®) < Palvl®) 00 Sy
0, po(ylx) > Pd(y|33) overestimate “data void”

Ji, Haozhe, et al. "Tailoring Language Generation Models under Total Variation Distance." /ICLR (2023).



TVD for LM Fine-Tuning

S

@ Learning objective for LM based on TVD [Ji et al., 2023] (ICLR'23 Oral):

¢ Tailr objective
Py (w)
F+ (L - )ps (W)

“”

Lraite(w; 0) = — ( ) log p5 (w)

stop gradient

¢ y trade-offs bias and variance: y = 1 (unbiased TVD) y — 0 (bias to KLD)

gradient
y - ()A VgD,
Vol-lrv
\VQLTaiLr
y=1
0 —> pe(¥|x)

Ji, Haozhe, et al. "Tailoring Language Generation Models under Total Variation Distance." /ICLR (2023).



Experiments

® Experiments: Various text generation tasks

One-way Training Test BLEU
Method Dev BLEU Test BLEU BiBERT (Table 2, Xu et al. 2021) 37.58
; ; BiBERT (Our implementation) _ _ _ _ _ _ _ _ _ 3801 _
MLE_ 35.81%  _ 34.27 'BiBERT + Tailr _ _ _ _ _ _ _ _ __ _ 7 39.12
| Unlikelihood 33.92* 32.82%!
'D2GPo 36.09% 34.50%, Dual-directional Training + Fine-Tuning Test BLEU
Other MLE variants ! . T 1] ;
1Loss truncation 35.63 34.48 | BiBERT (Table 3, Xu et al. 2021) 38.61
'GOLD _ _ _ ___.3574%_ _ _ 3468, BiBERT (Our implementation) _ _ _ _ _ _ _ _ _ 3873 _
TVD-based Tailr _______3644____35.05 IBiBERT + Tailr _ _ __ ____________ 39.33

Machine translation: Improve over the 2022 SOTA (BiBERT) on IWSLT14

Method B-1* D-41 rep-8) Mauvet Method R-1 R-2 R-L

MLE ______ 2785 8428 10311 _ 56.42} MLE_ 88.24' 10.12 _ 35.70'
[Unlikelihood ~ 27.88 8546  10.06  59.35% | Unlikelihood ~  37.80% 18.34% 34.84%
\D2GPo 22.73% 84.10 10.04  53.35% ' D2GPo 38.527 18.927 35.64%
Loss truncation  19.49% 76.51% 13.41F  45.35%) Loss truncation  38.62  19.29  35.85"
GOLD ___ _ _ 2525' 4698' 28231 15.44% R -3857"_19.27 _ 35791,
(Lailr _ _ _ _ _ 28.62_ 85.56__9.73_ _ _64.64 , \Tailr _ _ ____ 38.82 _19.50 _ 36.24 ,

Long text generation Text summarization

Ji, Haozhe, et al. "Tailoring Language Generation Models under Total Variation Distance." /ICLR (2023).
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Beyond MLE for AR LM

S

@ Takeaway & Future:

® The desired learning goal should capture quality, which might not always has
a tractable form.

@ Effectiveness and efficiency of learning: Bias-variance tradeoff
¢ Variance: Sparsity and complexity of data

¢ Bias: Inductive bias of estimation method

® Principle: Reduce variance with controlled bias




Beyond the theoretical limits of language modeling

Ennuumo

® Beyond AR: Expressive model family
# Energy-based model [ICLR’ 24]: Augment AR model with a residual energy model
¢ Latent-variable model [EMNLP’ 21]: Condition AR model with a latent plan
¢ Look-up model [EMNLP’ 20]: Extend AR model with a parallel database look-up



Beyond Auto-Regressive Model

S

® Parametric sequence model families [Lin et al, 2020]

Model Family Compact Efficient  Efficient Support of
parameters scoring  sampling distribution
Auto-Regressive Model (ARM) Some but not all S e P
Energy-Based Model (EBM) X AllSeP
Latent-Variable Model (LVM) X All S € NP
Look-Up Model (LUM) X All S
Practical cglesiderata Expre'ssivity

¢ Compact parameters: Parameter complexity grow in O(poly(n))

¢ Efficient scoring: Score a sequence in time of O(poly(n))

# Efficient sampling: Sample a sequence in time of O(poly(n))
*n: sequence length

Lin, Chu-Cheng, et al. "Limitations of Autoregressive Models and Their Alternatives." NAACL (2020).
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Beyond the theoretical limits of language modeling

Enuuum.

® Beyond AR: Expressive model family
¢ Energy-based model [ICLR’ 24]: Augment AR model with a residual energy model
¢ Latent-variable model [EMNLP’ 21]: Condition AR model with a latent plan
¢ Look-up model [EMNLP’ 20]: Extend AR model with a parallel database look-up
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Energy-Based Model

S

@ Definition: Assign low energy to sequence with high probability

e_EB(m,y) e_EO(may)
plylz) = Zy, e—Eo(zy) Z(x)

¢ Energy function: Eg(x,y) scores the complete sequence y

¢ Partition function: Z(x) is the normalizing constant which is intractable

® Advantage: Conditional probability implicitly marginalizing out the future

_EB(w7y<t>yt7yl>t)
Zy;te . Z(m7y<tayt)

Zy; o~ Bo(@yc,vl,) Z(z,Yyy)
>t

p(yt|y<t7 :I}) =

¢ Intuition: EBM shows that exactly computing the conditional probability requires
considering all possibilities in the future. Local normalization is insufficient (AR model)

Lin, Chu-Cheng, et al. "Limitations of Autoregressive Models and Their Alternatives." NAACL (2020).



Energy-Based Model

S

® Disadvantage: MLE, sampling for EBM is expensive due to intractable Z(x)

@ Noise-Contrastive Estimation (NCE): Sampling-free method

¢ Intuition: Reducing energy only on correct data points does not guarantee increasing their
probability. Need to “push them down wrong points”.

¢ Ranking objective:
639 (m’y+)

— log

min [E LK) o &
eso(w,y.i_) T Zk:l eSo (z,y

0  Yi~Pd:Y ld

¢ Score function:
so(x,y) = —Eg(x,y) — logpn (y|x)

¢ It is critical to choose an appropriate noise distribution which is useful for fine-grained
characterization of the energy landscape.

Gutmann, Michael., et al. “Noise-Contrastive Estimation of Unnormalized Statistical Models with Applications to Natural Image Statistics". JMLR (2013)



Energy-Based Model

S

@® Residual EBM: Leverage the inductive bias of local normalized AR model

exp[—E¢(.’1:, y)]
Z(x)

p(yle) = po(y|z)
¢ NCE improves over the base AR model by setting py = pg

¢ Facilitate sampling from EBM:

(1) Sampling from AR proposal (2) Resampling with energy function
WM H ~ po(yle) y ~ Cat(softmax|— Ey(z, y )] )

¢ Training a new EBM using NCE every time is costly and restrictive, considering a large
number of available evaluation metrics, reward model, classifiers, etc.

¢ Can we leverage those evaluation functions to build EBM?

Bakhtin, Anton,, et al. “Residual Energy-Based Models for Text Generation". JMLR (2022)
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Energy-Based Model

@ Build EBM by aggregating evaluation functions [Ji et al., 2024] (ICLR’ 24):

p(y|z) = pe(y|w)exp[—E¢(w, y)] -

[ Z(w) Aggregation

PEBM Da f 1

/ﬁ\m/\ ; S /\

S

Evaluation functions

* {fi,}X_, evaluate different aspect of the distribution

¢ How to aggregate different evaluation functions?

Ji, Haozhe, et al. "Language Model Decoding as Direct Metrics Optimization." ICLR (2024).



Energy-Based Model

S

@ Build EBM by aggregating evaluation functions [Ji et al., 2024] (ICLR’ 24):

¢ Aggregation criteria for unconditional LM decoding:
» Overall quality: Samples drawn from EBM are “good” on all evaluation functions

Epr[fk(y)] = Ey~p, k()] Vk € [1, K]

* Regularization: Explore within the support of AR LM distribution:

mpin Dk (pllpo)

¢ The optimal solution is exactly EBM:
K
p*(y) o po(y) exp [ - quk(y)]
k=1

- Energy function is the linear combination of evaluation functions {f;}X_,
» K optimal weights {u;,}K_, are automatically determined by solving the constraints.

Ji, Haozhe, et al. "Language Model Decoding as Direct Metrics Optimization." ICLR (2024).



Energy-Based Model

S

@ Build EBM by aggregating evaluation functions [Ji et al., 2024] (ICLR’ 24):

supp(p™) ) supp(pe)

supp(pq) sUpP(Perunc)) SUPP(Pg)

¢ Theoretical results: p* is a better approximation of p4

#1p”* close the gap of support to p,

supp(pq) € supp(p”) C supp(ps) supp(pa)
* Iterating the process effectively approaches p,

¢ Heuristic decoding method, e.g., top-k/p truncates pg “too hard”

supp(pd) € supp(Puunc) < supp(po)

» Lead to a biased distribution
* Lose coverage to the complete p,4

Ji, Haozhe, et al. "Language Model Decoding as Direct Metrics Optimization." ICLR (2024).



Energy-Based Model

S

@ Build EBM by aggregating evaluation functions [Ji et al., 2024] (ICLR’ 24):
¢ Theoretical results: p* is a better approximation of p4

#2 p* is guaranteed to improve perplexity (27) on p,

H(pa,p*) = H(pa,po) — DxL(p"|Ipo)

non-negative

* Pythagorean theorem of KL divergence:

KL(palpe) ,'/ i KL(p"1po) p* is the projection of p, on the hyperplane:
S -y P = {p | Eynplfx(4)] = Eynp, [fr(v)], VE € [1, K]}
Pq @
7)
KL(palpe)

Ji, Haozhe, et al. "Language Model Decoding as Direct Metrics Optimization." ICLR (2024).



Experiments

® Experiments: Unconditional LM decoding

¢ Evaluation functions: automatic metrics, e.g., coherence, repetition, diversity, etc.

Method

Wikipedia
\SR-4 TR-32 CcOH DIV &N MaU

Reference

‘ 0.48 21.3 623 925 232 -

60.9 65.5 602 8.03 229 597

I Nucleus

Truncated Sampling
| Typical _
rcb™

Contrastive Search

GPT—2 XL

2.11 234 609 878 101 778!

119 200 573 924 173 783 |
081 174 549 945 301 787 1

P T e e e o — o N T

71310 282 0 687 859 7550 "T18 ‘

Sample from EBM

OPT-6.7B
T
3
8
I L]
|

2.44 24.1 61.3 86.6 13 9 77.5 :
2.33 21 59.1 88.6 189  80.1 ,
1.06 19.6 STEUNINS U ISR

"'290___235'__6'86_%2'3__1'1_7__736'

1.13 21.7 ST R 833

Tl o w— e e — — R R N T N AT

Performance on various metrics

Model W¥k1p_ec41_1a_ ) Nev_vs_ -

ori | imp ‘ ori imp |
GPT2XL | 23.1 | 220 139 :131:
OPT-6.7B | 164 1162 108 1102 |

(Tuning-free) Perplexity improvement

DIV

100 [

94 F

88 |
82 |
76 |

Temperature |
Nucleus
DAEMON

(ofs}

Reference
| R S

55 56 57 58 59 60 61 62 63 64 65

COH

coherence-diversity tradeoff

Ji, Haozhe, et al. "Language Model Decoding as Direct Metrics Optimization." ICLR (2024).



Experiments

® Experiments: Multi-objective alignment

¢ Evaluation functions: reward models, e.g., helpfulness, harmless, etc.
¢ Conditional EBM:

p*(yle) x po(yl@)exp | - E(@,y)| 2o
)
= 087 - u"(x)
* Optimal instance-level weight: % 0.7 - e finepp = 0.6, fingm = 0.4
% 0.6 A -0 Ijhelp=0-5: Ijharm=0-5
Z'uk fk T y) ’g 0.5 - o ,UAhelp=0-4: ﬁharm=0-6
o v A A
E -0 uhe/p=0-3r Mharm = 0.7
£ 0.4 -
. . . . i ®
Empirical global weight: <03 N S
K = 101! 102
z,y) =Y finfr(z,y) A
k=1

Best-of-N experiments on Anthropic-HH

Ji, Haozhe, et al. "Language Model Decoding as Direct Metrics Optimization." ICLR (2024).



Energy-Based Model

@ Takeaway & Future:

@ EBM Learning: reward modeling
¢ Aggregation: Compositionality of EBM
¢ Calibration: Uncertainty-Awareness
® EBM Inference: Acceleration
¢ Re-sampling / Rejection sampling

¢ MCMC method: Langevin Dynamics

S

# Score-guided sampling (learn a score function as in diffusion)

# Learn tractable AR sampler (lossy due to capacity gap between ARM and EBM)




Beyond the theoretical limits of language modeling

EIIIIIIIIIII.

® Beyond AR: Expressive model family
# Energy-based model [ICLR’ 24]: Augment AR model with a residual energy model
¢ Latent-variable model [EMNLP’ 21]: Condition AR model with a latent plan
¢ Look-up model [EMNLP’ 20]: Extend AR model with a parallel database look-up



Latent-Variable Model

S

® Advantage: Model the unobserved as latent variable increases capacity
pvl2) = [ oyl 2)pa(zle)dz

¢ Theorem [Lin et al, 2020]: Latent-variable AR model has support S € NP

¢ Intuition: Marginalizing over the latent “compression” z of the future output y

@ Disadvantage: No tractable exact inference of likelihood due to integral over z!

® Variational inference:

po(ylx, 2)pe(z|T)
9 (2|, y)

p(y|:13) — IEqd,(z|ar:,y) [

¢ The inference is “amortized” by first finding a good approximated posterior g4 which

later facilitates inferring y from z.

Lin, Chu-Cheng, et al. "Limitations of Autoregressive Models and Their Alternatives." NAACL (2020).



Latent-Variable Model

S

® AR model with continuous latent variable [Bowman et al.,, 2015]:

Posterior (¢ @),
[z, y] AR LM
/’5\\
Prior "(Q\‘.
2,y
S -7 y t
- <
continuous

latent space

= logp(ylml > {EQ¢(Z|y,m) [— log pe(y, z)l‘f-pKL(q(p |po) [:I}l

NLL negative reconstruction error posterior-prior gap

¢ Posterior collapse: Posterior distribution collapses to prior distribution (KL~0)

¢ Losing long-term dependence: AR generation ignores z in the long term

Bowman, Samuel., et al. "Generating Sentences From a Continuous Space." arXiv preprint arXiv:1511.06349 (2015).



Latent-Variable Model
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® AR model with structural discrete latent codes [Ji et al., 2021] (EMNLP’ 21 Oral):

Db . & : v
Posterior EE AR LM |
] L b |
[z, Y] :
Prior 171 ... [ [z y<i] : . .:
L)L - oY WV ! Posterior distribution
T 1

discrete code over code vocabulary

sequence
¢ Discrete code sequence as “latent plan” that captures the long-term structure of y

¢ Controlled latent capacity: # latent codes (L) x # code vocabulary (K)

¢ Decoupling ELBO learning (due to discretization):

* Obtain code by argmax over posterior distribution
* Prior AR model learn the code by MLE

Ji, Haozhe., et al., "DiscoDVT: Generating Long Text with Discourse-Aware Discrete Variational Transformer." EMNLP (2021).



Latent-Variable Model

S

® Takeaway & Future :

¢ A good latent representation control amortization of the “bottleneck”

Continuous Discrete Text
latent variable latent codes plan tokens
Representation <« — = = = = = = = s c c c c c C e — - - - - + Data
X = Z >y X > Z >y X »Z >y
Posterior collapse (K — x) Tuned by K Exposure bias (K - 1)

# Hierarchical latent-variable model: diffusion model

* Amortize sampling into multiple stages
* Diffusion for AR LM




Beyond the theoretical limits of language modeling

EIIIIIIIIIII.

® Beyond AR: Expressive model family
# Energy-based model [ICLR’ 24]: Augment AR model with a residual energy model
¢ Latent-variable model [EMNLP’ 21]: Condition AR model with a latent plan
¢ Look-up model [EMNLP’ 20]: Extend AR model with a parallel database look-up



Look-Up Model

S

@ Advantage: Retrieve low-frequency “items” from the distribution long tail

@ Disadvantage: Naive look-up model has exploding parameters that stores “all”
seqguences.

® Practical look-up model: Semi-parametric models
¢ B: Database, e.g., text documents, knowledge graphs, etc.

¢ 0: AR parameters

p(elT, Y<i) = M@, y<0) PB(We|T, Y <) +[1 = M@, Y<o)] po (ye|2, y 1)

N v

Database look-up AR prediction

Do

p(ytlBarack Obama, born in) =

» Yt : » Yt
Hawaii Hawaii




Look-Up Model

S

@ Advantage: Retrieve low-frequency “items” from the distribution long tail

@ Disadvantage: Naive look-up model has exploding parameters that stores “all”
seqguences.

® Practical look-up model: Semi-parametric models
¢ B: Database, e.g., text documents, knowledge graphs, etc.

¢ 0: AR parameters

p(elT, Y<i) = M@ y<0) PB(Ye|T, Y <) +[1 — M@, Y<o)] po (ye|2, y 1)

" v

Database look-up AR prediction

® Parametric vs Non-parametric:
¢ Parametric AR model is effective at learning local text continuity

¢ Non-parametric database is efficient in capturing sparse relationship



Look-Up Model

S

® Semi-parametric model with text-based B (kKNN-LM) [Khandelwal et al, 2020]:

¢ key-value from text documents D: B = {(c’, w)|[c’, w'] € D}

o @ ]

AR LM N —
S Te L

e ]

[wa y<t] C; w;

embedding space

Py m) o Y My =w']exp (sim(c, [z, y.)) )

(ct,w?)

# Soft matching by context similarity (legacy of text representation learning)

¢ The complexity of database grows linearly with the size of training datal

Khandelwal, Urvashi, et al. "Generalization Through Memorization: Nearest Neighbor Language Models." ICLR (2020).



Look-Up Model

S

® Semi-parametric model with graph-based B [Ji et al., 2020] (EMNLP’ 20 Oral):

# Trie from knowledge graph G = (§,R): B={r"=(--- €\, 7% 11, €501, )€}, el € Erliy €R}

O
AR LM O ®
o ©
O

[wa y<t]

embedding space 1-Hop 2-Hop
H

PB(Y|Y 1> T) o exp (Z > 1y = 7i]sim(r%;, [, y<t]))

ri j=1
¢ Gain of structure; ’

* Accumulate and reuse evidence along the branch of the tree
« The complexity of tree grows linearly with the context length (« #docs)

# Build graph from documents to increase connectivity (followed by future works)

Ji, Haozhe, et al. "Language Generation with Multi-Hop Reasoning on Commonsense Knowledge Graph." EMNLP (2020).
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Look-Up Model

S

® Takeaway & Future :

® Look-up at decoding phase:
¢ Semi-parametric model: Merging look-up probability with LM probability
¢ Induce noise, need dynamic balancing the intensity

® Look-up at encoding phase:

# Retrieve-Augmented Generation (RAG): LM performing implicit look-up
¢ High fluency with hallucination

e sssEEEEEEEssssne (2 c—



Conclusion & Future

S

® Push the boundary of language modeling in a principled and scalable way:

@ #1Learn from Data in high quality
¢ Fine-grained annotations:
Generative — Preferential - Process — ?
¢ Solution: Quality-aware objective
+ Key: quality evaluation
® #2 Increase model expressivity

¢ Data growing slows down
* Need to increase data utilization
¢ Solution: Expressive model families
» Key: Scaling up upon AR model

Quality
A e o o
A
RKL --O
! Current paradigm
MLE [-- (S O
: : » Expressivity
AR EBM
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Thanks for Attention!

Q& A

Homepage: https://haozheji.github.io

Email: jihaozhe@gmail.com
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